ABSTRACT With countless “natural” experiments triggered by the COVID-19-associated physical distancing, one key question comes from chronobiology: “When confined to homes, how does the reduced exposure to natural daylight arising from the interruption of usual outdoor activities plus lost temporal organization ordinarily provided from workplaces and schools affect the circadian timing system (the internal 24 h clock) and, consequently, health of children and adults of all ages?” Herein, we discuss some ethical and scientific facets of exploring such natural experiments by offering a hypothetical case study of circadian biology. 相似文献
Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions. 相似文献
The existence of disulfide crosslinks limits the number of possible folded structures a protein can assume. Thus localization of disulfide and thiol groups is a key to understanding the conformation and orientation of myelin proteolipid protein (PLP) in the myelin membrane. [14C]Carboxamidomethylated PLP was fragmented with chymotrypsin, and the resulting mixture was partially separated by reversed-phase HPLC. Purified 14C-labeled peptides and a disulfide containing peptide were characterized by amino acid analysis. These experiments showed that Cys-32 and Cys-34 are free thiols, and are presumably on the interior of the cell or within the membrane bilayer, and that Cys-200 and Cys-219 are joined by a disulfide bond, and are probably located on the extracellular face of the membrane. Sequence analysis experiments indicate that Cys-5, Cys-6 and Cys-9 are linked by disulfides, probably to other parts of the protein on the extracellular face of the membrane. 相似文献
The polymers involved in the adhesion of Pseudomonas fluorescens H2S to solid surfaces were investigated to determine whether differences between cell surface adhesives and biofilm matrix polymers could be detected. Two optical techniques, i.e., interference reflection microscopy (IRM) and light section microscopy (LSM), were used to compare the responses of the two types of polymer to treatment with electrolytes, dimethyl sulfoxide (DMSO), and Tween 20. To evaluate initial adhesive polymers, P. fluorescens H2S cells were allowed to attach to glass cover slip surfaces and were immediately examined with IRM, and their response to chemical solutions was tested. With IRM, changes in cell-substratum separation distance between 0 and ca. 100 nm are detectable as changes in relative light intensity of the image; a contraction of the polymer would be detected as a darkening of the image, whereas expansion would appear as image brightening. To evaluate the intercellular polymer matrix in biofilms, 3-day-old biofilms were exposed to similar solutions, and the resultant change in biofilm thickness was measured with LSM, which measures film thicknesses between 10 and 1,000 microns. The initial adhesive and biofilm polymers were similar in that both appeared to contract when treated with electrolytes and to expand when treated with Tween 20. However, with DMSO treatment, the initial adhesive polymer appeared to contract, whereas there was no change in thickness of the biofilm polymer. These results indicate that both polymers bear acidic groups and thus act electrostatically with cations and are able to enter into hydrophobic interactions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4–30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces. 相似文献
The enzyme thymidine phosphorylase (thymidine: orthophosphate deoxyribosyltransferase, EC 2.4.2.4.), which plays a crucial role in nucleic acid metabolism in both prokaryotic and eukaryotic cells by regulating the availability of thymidine, is present in mammalian blood. Here we describe a simple, rapid HPLC-based micromethod for the assay of blood thymidine phosphorylase. We have arbitarily defined 1 unit of blood thymidine phosphorylase activity as the activity required to produce a 1-nM increment in the plasma concentration of thymine after incubation for 1 h at 37°C with a saturating concentration of exogenous thymidine.
In normal adults, whole (peripheral venous) blood thymidine phosphorylase activity with blood cells intact was 64 ± 11 units (mean ± S.D., n =20, range 45–89). The apparent Michaelis constant for thymidine was of the order to 10−4 M but varied nearly 5-fold between different individuals. Activity increased when blood cells were permeabilised or lysed with non-ionic detergents, implying that thymidine phosphorylase is an intracellular enzyme which may be influenced by exogenous as well as intracellular factors. When blood from normal donors was fractionated, thymidine phosphorylase activity consistently co-isolated with platelets. Whole-blood thymidine phosphorylase activity correlated well with platelet parameters. Although thymidine phosphorylase activity was also detected in plasma and serum, the small size and notorious fragility of platelets suggest its platelet origin.
Blood from leukaemic donors showed significantly increased thymidine phosphorylase activity compared to normal controls (mean activity ± S.D. was 96 ± 27 units; range 58–140, n = 8).
Thymine formation from thymidine was temperature- and pH-depdendent in whole blood. 2′-Deoxyuridine and 3 of its 5-halogenated analogues (but not 3′-azido-3′-deoxythymidine (AZT), were catabolised by blood thymidine phosphorylase, even during blood clotting at room temperature. Assumptions about in vivo concentrations of these compounds should therefore be interpreted cautiously.
In the presence of high concentrations of thymine and suitable deoxyribose donors, small amounts of thymidine were formed in some blood samples, so it is conceivable that thymidine catabolism may be reversible in vivo under some circumstances. 相似文献
This article applied distributed artificial intelligence to the real-time planning and control of flexible manufacturing systems (FMS) consisting of asynchronous manufacturing cells. A knowledge-based approach is used to determine the course of action, resource sharing, and processor assignments. Within each cell there is an embedded automatic planning system that executes dynamic scheduling and supervises manufacturing operations. Because of the decentralized control, real-time task assignments are carried out by a negotiation process among cell hosts. The negotiation process is modeled by augmented Petri nets —the combination of production rules and Petri nets—and is excuted by a distributed, rule-based algorithm. 相似文献
The MPM-2 antibody, which recognizes a mitosis-specific phosphorylated epitope, has been used to study cell-cycle-related proteins in partially synchronized cell suspension cultures and root meristem cells. Immunofluorescence revealed that the epitope recognized by MPM-2 is located in the nucleus in interphase cells. In mitotic cells, MPM-2 labels the prophase nucleus, the spindle and some cytoplasmic components. The relative amount of the epitope changes significantly during the cell cycle. Labelling is lowest in G1 and S-phase cells and increases 2–3-fold during G2. Prophase and metaphase show four to five times the labelling of G1 cells. Labelling decreases rapidly after metaphase and is at a very low level by telophase. One- (1-D) and two-dimensional (2-D) immunoblots showed that MPM-2 labels a family of phosphorylated proteins. The labelling shows significant cell cycle dependence. Subfractionation shows at least one of these proteins is a component of the detergent-insoluble cytoskeleton cell fraction. This component is resolved on 2-D immunoblots to two to three spots of slightly different isoelectric point, possibly charge isomers, at a relative molecular mass of approximately 65 kDa. The same spots are labelled by IFA, an antibody against intermediate filament proteins. Another three of the spots at lower relative molecular mass are labelled on 2-D immunoblots of the nuclear matrix fraction. 相似文献