首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   5篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Dutch elm disease (DED), caused by the fungi Ophiostoma ulmi and O. novo‐ulmi, has reduced elm populations severely in Europe and North America. Breeding programmes are in action to find less susceptible elm varieties suitable for re‐establishing elm stands. Bark beetles, mainly Scolytus spp., are the only known natural vectors of DED. During twig feeding, beetles transfer Ophiostoma spores to healthy elms. Thus, less palatable elms should run a lower risk of DED infections. In feeding preference bioassays, we offered twigs from elms exhibiting different degree of susceptibility to O. novo‐ulmi, together with non‐host trees to Scolytus beetles. Scolytus multistriatus preferred wych elm, Ulmus glabra, to 100% in two‐choice tests, whereas S. laevis did not discriminate between a tolerant and a susceptible variety of field elm, U. minor. We suggest that the feeding assay is useful as a low‐tech method in breeding programmes for evaluating the suitability of promising elm genotypes to vector insects.  相似文献   
12.
13.

Background

Fairy shrimps (Anostraca), tadpole shrimps (Notostraca), clam shrimps (Spinicaudata), algae (primarily filamentous blue-green algae [cyanobacteria]), and suspended organic particulates are dominant food web components of the seasonally inundated pans and playas of the western Mojave Desert in California. We examined the extent to which these branchiopods controlled algal abundance and species composition in clay pans between Rosamond and Rogers Dry Lakes. We surveyed branchiopods during the wet season to estimate abundances and then conducted a laboratory microcosm experiment, in which dried sediment containing cysts and the overlying algal crust were inundated and cultured. Microcosm trials were run with and without shrimps; each type of trial was run for two lengths of time: 30 and 60 days. We estimated the effect of shrimps on algae by measuring chlorophyll content and the relative abundance of algal species.

Results

We found two species of fairy shrimps (Branchinecta mackini and B. gigas), one tadpole shrimp (Lepidurus lemmoni), and a clam shrimp (Cyzicus setosa) in our wet-season field survey. We collected Branchinecta lindahli in a pilot study, but not subsequently. The dominant taxa were C. setosa and B. mackini, but abundances and species composition varied greatly among playas. The same species found in field surveys also occurred in the microcosm experiment. There were no significant differences as a function of experimental treatments for either chlorophyll content or algal species composition (Microcoleus vaginatus dominated all treatments).

Conclusions

The results suggest that there was no direct effect of shrimps on algae. Although the pans harbored an apparently high abundance of branchiopods, these animals had little role in regulating primary producers in this environment.  相似文献   
14.
Indirect facilitation by shrubs has been suggested as a cost-effective way of regenerating oaks in forests of conservation interest. In this study, we tested whether shrubs can enhance growth in pedunculate oak (Quercus robur) by suppressing herbaceous competitors. We studied interactions between young oaks, shrubs, and/or herbaceous vegetation in an open-field experiment, in southern Sweden, over the first 3 years after planting. Oak saplings were grown in four competition treatments: no competing vegetation; with herbaceous vegetation; with shrubs; and with both herbaceous vegetation and shrubs. Competition from shrubs and herbaceous vegetation both reduced stem diameter and biomass accumulation, but they affected biomass partitioning differently. Saplings grown with competition from shrubs partitioned biomass primarily into height growth, while those saplings exposed to competition from herbaceous vegetation invested a relatively higher proportion in root growth. Competition between shrubs and herbaceous vegetation reduced the above-ground biomass of the herbaceous vegetation, resulting in an indirect facilitative effect for the oaks during the first 2 years after planting. However, during the third year, shrubs had a negative effect on biomass accumulation. In summary, results from this study suggest that shrubs indirectly facilitate biomass accumulation of oak saplings by suppressing herbaceous vegetation, possibly by reducing competition for below-ground resources. However, owing to the relatively short duration of positive net outcome for the oak, we recommend that a longer-term assessment of the interaction between oak regeneration and neighboring shrubs be made before the outcome of this study is applied to practical forestry.  相似文献   
15.
We examined how performance of Operophtera brumata (Lepidoptera) larvae was affected by nitrogen (N) fertilization of boreal forest understorey vegetation. We monitored larval densities on Vaccinium myrtillus plants for a period of 7 years in a field experiment. Preliminary results indicated that the N effect on larval densities was weak. To examine if this was due to indirect interactions with a plant pathogen, Valdensia heterodoxa, that share the same host plant, or due to top-down effects of predation, we performed both a laboratory feeding experiment (individual level) and a bird exclusion experiment (population level) in the field. At the individual level, altered food plant quality (changes in plant concentration of carbon, N, phenolics, or condensed tannins) due to repeated infection by the pathogen had no effect on larval performance, but both survival to the adult stage and adult weight were positively affected by N fertilization. Exclusion of insectivorous birds increased the frequency of larval damage on V. myrtillus shoots, indicating higher larval densities. This effect was stronger in fertilized than in unfertilized plots, indicating higher bird predation in fertilized plots. Predation may thus explain the lack of fertilization effect on larval densities in the field experiment. Our results suggest that top-down effects are more important for larval densities than bottom-up effects, and that bird predation may play an important role in population regulation of O. brumata in boreal forests.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
16.
We explored the reasons underlying the biogeographic distribution patterns of the economically important, wood-rotting basidiomycete Heterobasidion annosum in Sweden. Despite the commonness of suitable host trees, Heterobasidion annosum has not been recorded in the north of Sweden, whereas its relative, H. parviporum, is present throughout the country. To test the hypothesis that H. annosum has not spread to the north because of the effect of climate, mainly differences in the general temperature regime, we inoculated Norway spruce stumps and standing trees with H. annosum and H. parviporum at six field sites, three in the south and three in the north of Sweden. Three strains of both species were used in random combinations, so that each selected stump and tree was inoculated with both species at the same time. At 2 and 10 months after the inoculations, we compared the frequencies of detection of H. annosum and H. parviporum colonies at different distances from inoculation points in the stumps and in trees. The H. annosum colonies were detected only infrequently on disks cut from the inoculated stumps (0–4% of re-isolations) in both areas, whereas H. parviporum was detected much more frequently (26–47% of re-isolations). In standing trees, colonies belonging to H. annosum could be detected up to 210 cm (south) and 80 cm (north) and those belonging to H. parviporum up to 210 cm (south) and 140 cm (north) above the inoculation points. Our results suggest that difference in temperature regime does not provide an explanation for the distribution limit of H. annosum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号