首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   40篇
  国内免费   1篇
  209篇
  2021年   2篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   13篇
  2010年   5篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   6篇
  2005年   16篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   2篇
  1999年   7篇
  1998年   4篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   7篇
  1987年   2篇
  1986年   3篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1970年   2篇
  1966年   3篇
  1965年   3篇
  1964年   4篇
  1963年   1篇
  1962年   2篇
  1961年   1篇
  1960年   2篇
  1958年   4篇
  1957年   6篇
  1956年   1篇
  1954年   3篇
  1953年   2篇
  1952年   1篇
  1951年   2篇
  1950年   2篇
  1949年   1篇
  1947年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
21.
The solute carrier 6 (SLC6) is a family of ion-dependent transporters that mediate uptake into the cell of osmolytes such as neurotransmitters and amino acids. Four SLC6 members transport GABA, a key neurotransmitter that triggers inhibitory signaling pathways via various receptors (e.g., GABAA). The GABA transporters (GATs) regulate the concentration of GABA available for signaling and are thus targeted by a variety of anticonvulsant and relaxant drugs. Here, we characterize GAT-2, a transporter that plays a role in peripheral GABAergic mechanisms, by constructing comparative structural models based on crystallographic structures of the leucine transporter LeuT. Models of GAT-2 in two different conformations were constructed and experimentally validated, using site-directed mutagenesis. Computational screening of 594,166 compounds including drugs, metabolites, and fragment-like molecules from the ZINC database revealed distinct ligands for the two GAT-2 models. 31 small molecules, including high scoring compounds and molecules chemically related to known and predicted GAT-2 ligands, were experimentally tested in inhibition assays. Twelve ligands were found, six of which were chemically novel (e.g., homotaurine). Our results suggest that GAT-2 is a high selectivity/low affinity transporter that is resistant to inhibition by typical GABAergic inhibitors. Finally, we compared the binding site of GAT-2 with those of other SLC6 members, including the norepinephrine transporter and other GATs, to identify ligand specificity determinants for this family. Our combined approach may be useful for characterizing interactions between small molecules and other membrane proteins, as well as for describing substrate specificities in other protein families.  相似文献   
22.
SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.  相似文献   
23.
A previously accomplished whole-genome scan for osteochondrosis (OC) and OC dissecans (OCD) in South German Coldblood horses using 250 microsatellite markers identified putative quantitative trait loci (QTL). A chromosome-wide significant QTL for fetlock OCD was found on Equus caballus chromosome (ECA) 4q at a relative position of 70.0-73.3 cM. The aim of this study was to analyze associations of single nucleotide polymorphisms (SNPs) in candidate genes for OC in this region. The association analysis included 32 affected and 64 unaffected horses. Three SNPs located in intron 8, intron 9, and 3'-untranslated region (UTR) of the acyloxyacyl hydrolase (AOAH) gene on ECA4q were significantly associated with OCD in fetlock joints. In order to control for systematic environmental and quantitative genetic effects, we employed a linear animal model. The association of the SNP (AJ543065:g.703A>G) in the 3'-UTR of exon 21 was confirmed in the animal model analysis and a significant additive genetic effect for fetlock OCD of 0.42 (P = 0.002) and a dominance effect of -0.32 (P = 0.03) was estimated. This is the first report on a marker in population-wide linkage disequilibrium with equine OCD in fetlock joints.  相似文献   
24.
Disturbance plays an integral part in generating heterogeneity required for ecosystem persistence, but the increased amplitude and duration of disturbances linked to drivers of global change could result in ecosystem shifts or collapse. Biomonitoring over time provides insights into trajectories of ecosystem change. The responses of two instream animal taxa to two contrasting disturbance events, a major flood event and the long-term cumulative effects of land-use changes, were assessed in 1999–2012 by quantifying variation and change in abundance of functional groups based on flow rate sensitivity, water quality and metrics of ecological condition. All metrics recovered to pre-flood conditions within seven months after the flood event. Similarly, cumulative impacts of land use effected significant decreases in some but not all metrics. Indices that did not change, including SASS total score and ASPT, were the result of insufficient consideration of the decrease in the abundance of sensitive taxa specifically, and the abundance of all taxa in general. The decrease in abundance of sensitive taxa could signal imminent collapse in certain metrics. Evidence is also provided for a shift in the structure of fish assemblages linked to the decrease and loss of taxa sensitive to ecosystem degradation caused by the longer-term impacts of land-use change.  相似文献   
25.
Binding sites for calcium and chloride ions, and urea on cuticular membrane surfaces were identified by microautoradiography. There was no localization of binding on either the smooth outer or irregular inner surfaces of the astomatous tomato fruit cuticle, and urea was bound to a lesser degree than inorganic ions. Calcium and chloride binding sites on surfaces of green onion leaf cuticles were closely associated with stomatal pores and above the periclinal cell walls. Binding of calcium was more pronounced than of chloride. These results are discussed in light of possible sites of entry for foliar applied nutrients.  相似文献   
26.
27.
Summary The absorption and subsequent transport of foliar applied Rb86 labeled Rb Cl (10 mM) was studied on bean plants (Phaseolus vulgaris, L. cv. Black Seeded Blue Lake) exposed to physiologically tolerable levels of certain plant growth substances in the solution culture root media. Gibberellin A3 (10-5 M) increased Rb uptake but did not affect total translocation from the treated leaf. Translocation was directed to the upper vegetative parts and markedly reduced to the roots. Foliar influx of Rb and transport to the roots were greatly enhanced by 1-naphthaleneacetic acid (10-6 M) but mobilization of Rb into the leaves and upper stem was reduced. 2-Chloroethyltrimethylammonium chloride (10-3 M) and N,N-dimethylaminosuccinamic acid (3×10-4 M) decreased the mobility of Rb to the upper stem, increased it to the roots, and had no effect on initial uptake. Rb absorption was depressed by 2,4-dichlorobenzyltributylphosphonium chloride (10-5 M) with no effect on subsequent translocation. Both uptake and mobility were strikingly inhibited by N6-benzyladenine (10-6 M).These results suggest that absorption and the subsequent transport of foliar absorbed Rb are independent processes and that the distribution or mobilization of Rb in the various plant organs was not always a function of the chemically modified growth rate of the corresponding organ.Report No. COO-888-50 in cooperation with the Division of Biology and Medicine of the United States Atomic Energy Commission, Contract No. AT (11-1)-888. Journal Article No. 3643 of the Michigan Agricultural Experiment Station.  相似文献   
28.
Activating mutations in epidermal growth factor receptor-1 (EGFR) are found in 10–15% of Caucasian patients with non–small cell lung carcinoma (NSCLC). Approximately 90% of the mutations are deletions of several amino acids in exon 19 or point mutations in exon 21. Some studies suggest that these mutations identify patients that might benefit from targeted EGFR inhibitor therapy. DNA melting analysis of polymerase chain reaction products can screen for these mutations to identify this patient population. However, amplicon DNA melting analysis, although easily capable of detecting heterozygous mutations by heterodimer formation, becomes more difficult if mutations are homozygous or if the mutant allele is selectively amplified over wild type. Amplification of EGFR is common in NSCLC and this could compromise mutation detection by amplicon melting analysis. To overcome this potential limitation, we developed unlabeled, single-stranded DNA probes, complimentary to EGFR exon 19 and exon 21 where the common activating mutations occur. The unlabeled probes are incorporated into a standard polymerase chain reaction during the amplification of EGFR exons 19 and 21. The probe melting peak is easily distinguished from the amplicon melting peak, and probe melting is altered if mutations are present. This allows for easy identification of activating mutations even in homozygous or amplified states and is useful in the screening of NSCLC for the common EGFR activating mutations.  相似文献   
29.

Background

Alveolar echinococcosis (AE) is a severe chronic hepatic parasitic disease currently emerging in central and eastern Europe. Untreated AE presents a high mortality (>90%) due to a severe hepatic destruction as a result of parasitic metacestode proliferation which behaves like a malignant tumor. Despite this severe course and outcome of disease, the genetic program that regulates the host response leading to organ damage as a consequence of hepatic alveolar echinococcosis is largely unknown.

Methodology/Principal Findings

We used a mouse model of AE to assess gene expression profiles in the liver after establishment of a chronic disease status as a result of a primary peroral infection with eggs of the fox tapeworm Echinococcus multilocularis. Among 38 genes differentially regulated (false discovery rate adjusted p≤0.05), 35 genes were assigned to the functional gene ontology group <immune response>, while 3 associated with the functional group <intermediary metabolism>. Upregulated genes associated with <immune response> could be clustered into functional subgroups including <macrophages>, <APCs>, <lymphocytes, chemokines and regulation>, <B-cells> and <eosinophils>. Two downregulated genes related to <lymphocytes, chemokines and regulation> and <intermediary metabolism>, respectively. The <immune response> genes either associated with an <immunosupression> or an <immunostimulation> pathway. From the overexpressed genes, 18 genes were subsequently processed with a Custom Array microfluidic card system in order to assess respective expression status at the mRNA level relative to 5 reference genes (Gapdh, Est1, Rlp3, Mdh-1, Rpl37) selected upon a constitutive and stable expression level. The results generated by the two independent tools used for the assessment of gene expression, i.e., microarray and microfluidic card system, exhibited a high level of congruency (Spearman correlation rho = 0.81, p = 7.87e-5) and thus validated the applied methods.

Conclusions/Significance

Based on this set of biomarkers, new diagnostic targets have been made available to predict disease status and progression. These biomarkers may also offer new targets for immuno-therapeutic intervention.  相似文献   
30.

Background

DNA methylation plays crucial roles in epigenetic gene regulation in normal development and disease pathogenesis. Efficient and accurate quantification of DNA methylation at single base resolution can greatly advance the knowledge of disease mechanisms and be used to identify potential biomarkers. We developed an improved pipeline based on reduced representation bisulfite sequencing (RRBS) for cost-effective genome-wide quantification of DNA methylation at single base resolution. A selection of two restriction enzymes (TaqαI and MspI) enables a more unbiased coverage of genomic regions of different CpG densities. We further developed a highly automated software package to analyze bisulfite sequencing results from the Solexa GAIIx system.

Results

With two sequencing lanes, we were able to quantify ~1.8 million individual CpG sites at a minimum sequencing depth of 10. Overall, about 76.7% of CpG islands, 54.9% of CpG island shores and 52.2% of core promoters in the human genome were covered with at least 3 CpG sites per region.

Conclusions

With this new pipeline, it is now possible to perform whole-genome DNA methylation analysis at single base resolution for a large number of samples for understanding how DNA methylation and its changes are involved in development, differentiation, and disease pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号