首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   8篇
  2021年   4篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   14篇
  2011年   4篇
  2010年   15篇
  2009年   3篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   8篇
  1996年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1952年   1篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
51.
Different from tetrapods, teleost vertebral centra form without prior establishment of a cartilaginous scaffold, in two steps: First, mineralization of the notochord sheath establishes the vertebral centra. Second, sclerotome derived mesenchymal cells migrate around the notochord sheath. These cells differentiate into osteoblasts and deposit bone onto the mineralized notochord sheath in a process of intramembranous bone formation. In contrast, most skeletal elements of the cranial skeleton arise by chondral bone formation, with remarkably similar mechanisms in fish and tetrapods. To further investigate the role of osteoblasts during formation of the cranial and axial skeleton, we generated a transgenic osx:CFP-NTR medaka line which enables conditional ablation of osterix expressing osteoblasts. By expressing a bacterial nitroreductase (NTR) fused to Cyan Fluorescent Protein (CFP) under control of the osterix promoter these cells become sensitive towards Metronidazole (Mtz). Mtz treatment of stable osx:CFP-NTR transgenic medaka for several consecutive days led to significant loss of osteoblasts by apoptosis. Live staining of mineralized bone matrix revealed reduced ossification in head skeletal elements such as cleithrum and operculum, as well as in the vertebral arches. Interestingly in Mtz treated larvae, intervertebral spaces were missing and the notochord sheath was often continuously mineralized resulting in the fusion of centra. We therefore propose a dual role for osx-positive osteoblasts in fish. Besides a role in bone deposition, we suggest an additional border function during mineralization of the chordal centra. After termination of Mtz treatment, osteoblasts gradually reappeared, indicating regenerative properties in this cell lineage. Taken together, the osx:CFP-NTR medaka line represents a valuable tool to study osteoblast function and regeneration at different stages of development in whole vertebrate specimens in vivo.  相似文献   
52.
There is emerging evidence that tungsten has toxic health effects. We summarize the recent tungsten toxicity research in this short review. Tungsten is widely used in many commercial and military applications because it has the second highest melting temperature of any element. Consequently, it is important to elucidate the potential health effects of tungsten.  相似文献   
53.
54.
Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein-RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation.  相似文献   
55.
A cartilaginous pectoral fin endoskeleton in zebrafish (Danio rerio) develops early, after which the cartilage of the larval fin endoskeleton undergoes a complete transformation into the adult morphology. This transformation includes multiple subdivisions of a single cartilaginous disk. The type of cartilage subdivision is unique to teleost fish. In this study, we present the timing and the developmental features of these subdivisions and we discuss variation in this process, caused by differences in growth rate. We establish that the cartilage subdivisions are developmentally linked to the formation of lepidotrichia in the fin fold. At the cellular level, we show that neither apoptosis nor resorption by chondroclasts and/or macrophages contributes to the cartilage subdivision. Ultrastructural observations show dedifferentiation of chondrocytes in subdivision zones. Different from forelimb development in other vertebrates, dedifferentiation is an important mechanism in the development of the adult pectoral fin skeleton. We here provide further support for the idea that the phenotype of skeletal tissues is not terminal and that plasticity of differentiated connective tissues can play an important role in various developmental and homeostatic processes.  相似文献   
56.
In the past 15 years, new "omics" technologies have made it possible to obtain high-resolution molecular snapshots of organisms, tissues, and even individual cells at various disease states and experimental conditions. It is hoped that these developments will usher in a new era of personalized medicine in which an individual's molecular measurements are used to diagnose disease, guide therapy, and perform other tasks more accurately and effectively than is possible using standard approaches. There now exists a vast literature of reported "molecular signatures". However, despite some notable exceptions, many of these signatures have suffered from limited reproducibility in independent datasets, insufficient sensitivity or specificity to meet clinical needs, or other challenges. In this paper, we discuss the process of molecular signature discovery on the basis of omics data. In particular, we highlight potential pitfalls in the discovery process, as well as strategies that can be used to increase the odds of successful discovery. Despite the difficulties that have plagued the field of molecular signature discovery, we remain optimistic about the potential to harness the vast amounts of available omics data in order to substantially impact clinical practice.  相似文献   
57.
58.
It is well documented, in the biological literature, that many species throughout the animal kingdom exhibit Gompertzian or Weibull-like population level total survival distributions. Many researchers have long assumed, believed, or otherwise postulated that an individual organism, in such a population, survived according to an exponential survival distribution. Using well-known results from reliability theory, it is shown that if every individual in the population has an exponentially distributed lifespan, then a Gompertzian or Weibull-like group/population level dynamics (or any other dynamics with a strictly increasing mortality rate for some interval) is not possible. This implies that, for species with a population level Gompertzian or Weibull (with the mortality rate strictly increasing) survival curve, some or all of the individual organisms must have non-exponentially distributed lifespans.  相似文献   
59.
A brief review of measurement theory in quantum mechanical and biological systems is made, the concept of quantum nondemolition experiments is discussed and a possible resolution to a previous discussion on the existence of nonrepeatable experiments is presented.  相似文献   
60.
Abstract. The mode of formation of the molluscan exoskeleton is still poorly understood, but studies on adult snails indicate that enzymes involved in vertebrate bone formation also participate in mollusc shell formation. The enzymes peroxidase, alkaline phosphatase, and acid phosphatase are expressed in a constant pattern and help to identify the different zones of the adult shell-forming tissue. The present study evaluates whether the expression of these enzymes is also a tool for the identification of the developing zones of the embryonic shell-forming tissue. Thus, we analyzed the temporal and spatial activity of the above-mentioned enzymes and of tartrate-resistant acid phosphatase in the shell forming tissues in Biomphalaria glabrata. Embryos of different age groups and adults were studied; alkaline phosphatase activity was seen in very young embryos in the shell field invagination prior to the secretion of any shell material, while peroxidase activity was present from the start of the periostracum production. Acid phosphatase, found in considerable amounts in yolk granules and albumen cells, appeared in the embryonic shell-forming tissue in relatively few Golgi stacks. Tartrate-resistant phosphatase was not present in embryos, but was found in adults in the same zone of the mantle edge as acid phosphatase. Using the enzymes as cell markers, the differentiation of the embryonic shell-forming tissue to the different zones of the adult mantle edge could clearly be followed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号