首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   40篇
  686篇
  2023年   4篇
  2022年   5篇
  2021年   5篇
  2020年   7篇
  2019年   9篇
  2018年   6篇
  2017年   8篇
  2016年   16篇
  2015年   18篇
  2014年   24篇
  2013年   30篇
  2012年   42篇
  2011年   31篇
  2010年   12篇
  2009年   23篇
  2008年   21篇
  2007年   21篇
  2006年   20篇
  2005年   18篇
  2004年   27篇
  2003年   31篇
  2002年   24篇
  2001年   23篇
  2000年   21篇
  1999年   20篇
  1998年   8篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   6篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   13篇
  1987年   16篇
  1986年   7篇
  1985年   11篇
  1984年   14篇
  1983年   5篇
  1981年   7篇
  1979年   9篇
  1977年   9篇
  1976年   9篇
  1975年   9篇
  1972年   5篇
  1971年   5篇
  1970年   3篇
  1966年   4篇
  1965年   5篇
排序方式: 共有686条查询结果,搜索用时 15 毫秒
31.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   
32.
33.
34.
Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined p K a value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed p K a of 5.4 +/- 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine p K a analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the p K a of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its p K a in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.  相似文献   
35.
Recent reports have indicated that insect antimicrobial peptides kill bacteria by inhibiting the molecular chaperone DnaK. It was proposed that the antimicrobial peptide, all-L-pyrrhocoricin (L-PYR), binds to two sites on DnaK, the conventional substrate-binding site and the multi-helical C-terminal lid, and that inhibition of DnaK comes about from the lid mode of binding. In this report, we show using two different assays that L-PYR binds to and stimulates the ATPase activity of both wild-type and a lidless variant of DnaK. Our study shows that L-PYR interacts with DnaK much like the all-L NR (NRLLLTG) peptide, which is known to bind in the conventional substrate-binding site of DnaK. L-PYR antimicrobial activity is thus a consequence of the competitive inhibition of bacterial DnaK.  相似文献   
36.
Primary ciliary dyskinesia: genes, candidate genes and chromosomal regions   总被引:9,自引:0,他引:9  
Primary ciliary dyskinesia (PCD) is a multisystem disease characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis and male subfertility, associated in about 50% patients with situs inversus totalis (the Kartagener syndrome). The disease phenotype is caused by ultrastructural defects of respiratory cilia and sperm tails. PCD is a heterogenetic disorder, usually inherited as an autosomal recessive trait. So far, mutations in two human genes have been proved to cause the disease. However, the pathogenetics of most PCD cases remains unsolved. In this review, the disease pathomechanism is discussed along with the genes that are or may be involved in the pathogenesis of primary ciliary dyskinesia and the Kartagener syndrome.  相似文献   
37.
Recently, we isolated the sulfite oxidase (SO) gene from Arabidopsis thaliana and characterized the purified SO protein. The purpose of the present study was to determine the subcellular localization of this novel plant enzyme. Immunogold electron-microscopic analysis showed the gold labels nearly exclusively in the peroxisomes. To verify this finding, green fluorescent protein was fused to full-length plant SO including the putative peroxisomal targeting signal 1 (PTS1) 'SNL' and expressed in tobacco leaves. Our results showed a punctate fluorescence pattern resembling that of peroxisomes. Co-labelling with MitoTracker-Red excluded that the observed fluorescence was due to mitochondrial sorting. By investigation of deleted or mutated PTS1, no functional peroxisomal targeting signal 2 (PTS2) could be detected in plant SO. This conclusion is supported by expression studies in Pichia pastoris mutants with defined defects either in PTS1- or PTS2-mediated peroxisomal import.  相似文献   
38.
Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question “Which areas cause the present activity of which others?”. Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions) can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early proposals, we advance here that dynamic interactions between brain rhythms provide as well the basis for the self-organized control of this “communication-through-coherence”, making thus possible a fast “on-demand” reconfiguration of global information routing modalities.  相似文献   
39.
We discuss recent experiments that have illuminated individual steps in the reaction cycle of the Escherichia coli Hsp70 molecular chaperone DnaK. Using this new information, we compare two distinctly different global mechanisms of action--holding versus unfolding--and argue that the available evidence suggests that DnaK is an unfoldase.  相似文献   
40.
The 16S and 23S rRNA of various Streptomyces species were partially sequenced and screened for the presence of stretches that could define all members of the genus, groups of species, or individual species. Nucleotide 929 (Streptomyces ambofaciens nomenclature [J.L. Pernodet, M.T. Alegre, F. Boccard, and M. Guerineau, Gene 79:33-46, 1989]) is a nucleotide highly unique to Streptomyces species which, in combination with flanking regions, allowed the designation of a genus-specific probe. Regions 158 through 203 of the 16S rRNA and 1518 through 1645 of the 23S rRNA (helix 54 [Pernodet et al., Gene 79:33-46, 1989]) have a high potential to define species, whereas the degree of variation in regions 982 through 998 and 1102 through 1122 of the 16S rRNA is less pronounced but characteristic for at least certain species. Alone or in combination with each other, these regions may serve as target sites for synthetic oligonucleotide probes and primers to be used in the determination of pure cultures and in the characterization of community structures. The specificity of several probes is demonstrated by dot blot hybridization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号