首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   41篇
  2022年   4篇
  2021年   6篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   8篇
  2016年   16篇
  2015年   20篇
  2014年   26篇
  2013年   33篇
  2012年   45篇
  2011年   32篇
  2010年   13篇
  2009年   24篇
  2008年   21篇
  2007年   23篇
  2006年   23篇
  2005年   19篇
  2004年   28篇
  2003年   33篇
  2002年   24篇
  2001年   23篇
  2000年   22篇
  1999年   21篇
  1998年   11篇
  1997年   9篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   13篇
  1987年   16篇
  1986年   7篇
  1985年   11篇
  1984年   14篇
  1983年   6篇
  1981年   7篇
  1979年   10篇
  1977年   12篇
  1976年   9篇
  1975年   9篇
  1974年   3篇
  1972年   6篇
  1971年   5篇
  1970年   3篇
  1966年   4篇
  1965年   5篇
排序方式: 共有725条查询结果,搜索用时 20 毫秒
101.
Structure of the mammalian kinetochore   总被引:27,自引:0,他引:27  
The structure of the mammalian trilaminar kinetocnore was investigated using stereo electron microscopy of chromosomes in hypotonie solutions which unraveled the chromosome but maintained microtubules. Mouse and Chinese hamster ovary cells were arrested in Colcemid and allowed to reform microtubules after Colcemid was removed. Recovered cells were then swelled, lysed or spread in hypotonic solutions which contained D2O to preserve microtubules. The chromosomes were observed in thin and thick sections and as whole mounts using high voltage electron microscopy. Bundles of microtubules were seen directly attached to chromatin, indicating that the kinetochore outer layer represents a differential arrangement of chromatin, continuous with the body of the chromosome. In cells fixed without pretreatment, the outer layer could be seen to be composed of hairpin loops of chromatin stacked together to form a solid layer. The hypotonically-induced unraveling of the outer layer was found to be reversible, and the typical 300 nm thick disk reformed when cells were returned to isotonic solutions. Short microtubules, newly nucleated after Colcemid removal, were found not to be attached to the kinetochore outer layer, but were situated in the fibrous corona on the external surface of the outer layer. This was verified by observations of thick sections in stereo which made it possible to identify microtubule ends within the section. Thus, kinetochore microtubules are nucleated within the fibrous corona, and subsequently become attached to the outer layer. We dedicate this paper to Wolfgang Beermann on the occasion of his 60th birthday in appreciation of many years of friendship and his pioneering contributions in the field of chromosome biology  相似文献   
102.
103.
Plasmonics - Time-resolved imaging of the propagation and interference of isolated ultrashort surface plasmon polariton wave packets is demonstrated using two photon photoemission microscopy. The...  相似文献   
104.
Context: C-reactive protein (CRP), a biomarker of inflammation, may correlate with prognosis in several malignancies.

Objective: To investigate the prognostic impact of early postoperative peak serum levels of CRP on tumor-specific outcome in 106 liver transplant patients with hepatocellular carcinoma (HCC).

Methods and results: In multivariate Cox regression analysis, a posttransplant elevated peak CRP level (>versus?≤?3.5?mg/dl) was identified as an independent predictor of poor recurrence-free survival (p?=?0.01; HR?=?4.04; CI?=?1.399–11.640).

Conclusion: Early postoperative serum CRP may serve as a useful inflammation-based biomarker of outcome in liver transplant patients with HCC.  相似文献   
105.
A role for myosin phosphorylation in modulating normal cardiac function has long been suspected, and we hypothesized that changing the phosphorylation status of a cardiac myosin light chain might alter cardiac function in the whole animal. To test this directly, transgenic mice were created in which three potentially phosphorylatable serines in the ventricular isoform of the regulatory myosin light chain were mutated to alanines. Lines were obtained in which replacement of the endogenous species in the ventricle with the nonphosphorylatable, transgenically encoded protein was essentially complete. The mice show a spectrum of cardiovascular changes. As previously observed in skeletal muscle, Ca(2+) sensitivity of force development was dependent upon the phosphorylation status of the regulatory light chain. Structural abnormalities were detected by both gross histology and transmission electron microscopic analyses. Mature animals showed both atrial hypertrophy and dilatation. Echocardiographic analysis revealed that as a result of chamber enlargement, severe tricuspid valve insufficiency resulted in a detectable regurgitation jet. We conclude that regulated phosphorylation of the regulatory myosin light chains appears to play an important role in maintaining normal cardiac function over the lifetime of the animal.  相似文献   
106.
In cardiac muscle, the giant protein titin exists in different length isoforms expressed in the molecule's I-band region. Both isoforms, termed N2-A and N2-B, comprise stretches of Ig-like modules separated by the PEVK domain. Central I-band titin also contains isoform-specific Ig-motifs and nonmodular sequences, notably a longer insertion in N2-B. We investigated the elastic behavior of the I-band isoforms by using single-myofibril mechanics, immunofluorescence microscopy, and immunoelectron microscopy of rabbit cardiac sarcomeres stained with sequence-assigned antibodies. Moreover, we overexpressed constructs from the N2-B region in chick cardiac cells to search for possible structural properties of this cardiac-specific segment.We found that cardiac titin contains three distinct elastic elements: poly-Ig regions, the PEVK domain, and the N2-B sequence insertion, which extends approximately 60 nm at high physiological stretch. Recruitment of all three elements allows cardiac titin to extend fully reversibly at physiological sarcomere lengths, without the need to unfold Ig domains. Overexpressing the entire N2-B region or its NH(2) terminus in cardiac myocytes greatly disrupted thin filament, but not thick filament structure. Our results strongly suggest that the NH(2)-terminal N2-B domains are necessary to stabilize thin filament integrity. N2-B-titin emerges as a unique region critical for both reversible extensibility and structural maintenance of cardiac myofibrils.  相似文献   
107.
Animal models are at the forefront of biomedical research for studies of viral transmission, vaccines, and pathogenesis, yet the need for an ideal large animal model for COVID-19 remains. We used a meta-analysis to evaluate published data relevant to this need. Our literature survey contained 22 studies with data relevant to the incidence of common COVID-19 symptoms in rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), African green monkeys (Chlorocebus aethiops), and ferrets (Mustela putorius furo). Rhesus macaques had leukocytosis on Day 1 after inoculation and pneumonia on Days 7 and 14 after inoculation in frequencies that were similar enough to humans to reject the null hypothesis of a Fisher exact test. However, the differences in overall presentation of disease were too different from that of humans to successfully identify any of these 4 species as an ideal large animal of COVID-19. The greatest limitation to the current study is a lack of standardization in experimentation and reporting. To expand our understanding of the pathology of COVID-19 and evaluate vaccine immunogenicity, we must extend the unprecedented collaboration that has arisen in the study of COVID-19 to include standardization of animal-based research in an effort to find the optimal animal model.

Human research of disease presents a number of ethical dilemmas, prompting scientists to use animal models in their research with the primary goal of enhancing the understanding of a human disease or phenomenon. Animal models have been instrumental to our understanding of pathologies, the assessment of novel vaccines, and the testing of acute therapies. Of the past 222 Nobel prizes awarded in the physiology and medicine categories since 1901, all but 36 have been a direct result of animal-based research.31Insects, nematodes, fish, amphibians, and numerous mammals have enabled some of the most important advances in physiology and medicine since their introduction in disease research. Through genetic modification, surgical adaptation, xenografts, chemical induction, and infection models, these animals have been used to model human phenomena.31 However, although particular animal species are often chosen based on their ability to meet specific criteria in line with the research question, their size remains an important factor.26,31Small animals are often preferred in laboratory settings for their ease of use, shorter life cycle, easier handling and care, and short gestation.5 Rodents are the most commonly used animal for the study of human diseases for these very reasons, although they frequently fail to fully mimic the clinical signs and significant pathologic hallmarks of human diseases.11,18 For this reason, some researchers use large animal models. Nonhuman primates (NHPs), in particular, have been extremely useful in reproducing the clinical signs of human diseases due to their close phylogenetic relationship to humans and resulting genetic, behavioral, and biochemical similarities.14On March 11, 2020, the World Health Organization declared a SARS-CoV-2 pandemic. SARS-CoV-2 is a novel coronavirus causing symptoms similar to, but distinct from, those found in individuals infected with SARS-CoV, the coronavirus that caused the 2003 SARS pandemic. As of September 10, 2021, this coronavirus has infected 219 million individuals with the COVID-19 disease.10 Although vaccines have been developed and approved in record time, we still need to better understand the pathogenesis of the disease and the long-term implications of infections. To do this, and to increase our understanding of the immunogenicity of current vaccines, finding an animal that replicates the manifestation of COVID-19 in humans is imperative.Much of the research on COVID-19 thus far has been aided by previous SARS research. In both SARS-CoV and SARS-CoV-2 studies, mice33,45 and hamsters19,34 were small animal models of choice. Large animals such as ferrets, cats, pigs, chickens, dogs, and nonhuman primates have also been tested for their reproducibility of COVID-19, with varying degrees of success.27,41,49 While a perfect animal model of this viral infection is unlikely, the need remains to identify at least one large animal species as a frontrunner in reproducibility of the human clinical signs and significant pathologies of SARS-CoV-2 infection.The need for a large animal model to study COVID-19 does not imply a replacement for murine models, but rather an adjunct. The closer phylogenetic relationship of humans to NHPs makes them excellent candidates for the study of this disease. Vaccine trials have already shown that the responses of NHPs are closer to those of humans than are those of mice.23 This difference may be due to species differences in IgG antibody and T helper type 1 cell responses that influence virus-immune system interactions, which make small animal models problematic for studying SARS-CoV-2 infection and vaccine performance in humans.15 NHPs have potential high value as a model due to their homology to the human angiotensin‐converting enzyme‐2, which is the SARS-CoV-2 binding site.23,28 After the outbreak, the World Health Organization (WHO) formed the WHO COVID-19 modelling ad-hoc expert grouping. The working group identified various NHP models, including rhesus macaques, cynomolgus macaques and African green monkeys, in addition to ferrets as being susceptible to SARS Co-V-2 isolates that would result in reproducible infection, with mild to moderate disease.52 Therefore, the present article is focused on summarizing the results of multiple studies on rhesus macaque, cynomolgus macaque, African green monkey, and ferret infection with SARS-CoV-2. To highlight the species that best replicate the human clinical and laboratory findings of COVID-19, we synthesized the results of 22 animal studies to provide a comprehensive analysis of what is known about their infections to date.  相似文献   
108.
Birds that migrate across high altitude mountain ranges are faced with the challenge of maintaining vigorous exercise in environments with limited oxygen. Ruddy shelducks are known to use wintering grounds south of the Tibetan Plateau at sea level and breeding grounds north of Himalayan mountain range. Therefore, it is likely these shelducks are preforming high altitude migrations. In this study we analyse satellite telemetry data collected from 15 ruddy shelduck from two populations wintering south of the Tibetan Plateau from 2007 to 2011. During north and south migrations ruddy shelduck travelled 1481 km (range 548–2671 km) and 1238 km (range 548–2689 km) respectively. We find mean maximum altitudes of birds in flight reached 5590 m (range of means 4755–6800 m) and mean maximum climb rates of 0.45 m s–1 (range 0.23–0.74 m s–1). The ruddy shelduck is therefore an extreme high altitude migrant that has likely evolved a range of physiological adaptations in order to complete their migrations.  相似文献   
109.
Multiple changes at the DNA level are at the basis of complex diseases. Identifying the genetic networks that are influenced by these changes might help in understanding the development of these diseases. Canonical correlation analysis is used to associate gene expressions with DNA-markers and thus reveals sets of co-expressed and co-regulated genes and their associating DNA-markers. However, when the number of variables gets high, e.g. in the case of microarray studies, interpretation of these results can be difficult. By adapting the elastic net to canonical correlation analysis the number of variables reduces, and interpretation becomes easier, moreover, due to the grouping effect of the elastic net co-regulated and co-expressed genes cluster. Additionally, our adaptation works well in situations where the number of variables exceeds by far the number of subjects.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号