首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   26篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2018年   10篇
  2017年   5篇
  2016年   13篇
  2015年   21篇
  2014年   19篇
  2013年   36篇
  2012年   27篇
  2011年   32篇
  2010年   16篇
  2009年   18篇
  2008年   22篇
  2007年   24篇
  2006年   24篇
  2005年   25篇
  2004年   12篇
  2003年   17篇
  2002年   22篇
  2001年   3篇
  1998年   2篇
  1997年   3篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1990年   7篇
  1989年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   6篇
  1976年   1篇
  1974年   1篇
  1973年   4篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1957年   1篇
  1939年   1篇
  1930年   1篇
排序方式: 共有448条查询结果,搜索用时 31 毫秒
111.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   
112.
Transmissible spongiform encephalopathies are associated with the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). Here we have examined the kinetics of folding and unfolding reactions for the recombinant human prion protein C-terminal fragment 90-231 at pH 4.8 and 7.0. The stopped-flow data provide clear evidence for the population of an intermediate on the refolding pathway of the prion protein as indicated by a pronounced curvature in chevron plots and the presence of significant burst phase amplitude in the refolding kinetics. In addition to its role in the normal prion protein folding, this intermediate likely represents a crucial monomeric precursor of the pathogenic PrP(Sc) isoform.  相似文献   
113.
Dicer is a multi-domain RNase III-related endonuclease responsible for processing double-stranded RNA (dsRNA) to small interfering RNAs (siRNAs) during a process of RNA interference (RNAi). It also catalyses excision of the regulatory microRNAs from their precursors. In this work, we describe the purification and properties of a recombinant human Dicer. The protein cleaves dsRNAs into approximately 22 nucleotide siRNAs. Accumulation of processing intermediates of discrete sizes, and experiments performed with substrates containing modified ends, indicate that Dicer preferentially cleaves dsRNAs at their termini. Binding of the enzyme to the substrate can be uncoupled from the cleavage step by omitting Mg(2+) or performing the reaction at 4 degrees C. Activity of the recombinant Dicer, and of the endogenous protein present in mammalian cell extracts, is stimulated by limited proteolysis, and the proteolysed enzyme becomes active at 4 degrees C. Cleavage of dsRNA by purifed Dicer and the endogenous enzyme is ATP independent. Additional experiments suggest that if ATP participates in the Dicer reaction in mammalian cells, it might be involved in product release needed for the multiple turnover of the enzyme.  相似文献   
114.
Vila A  Korytowski W  Girotti AW 《Biochemistry》2002,41(46):13705-13716
Under oxidative pressure in the vascular circulation, erythrocytes and phagocytic cells may accumulate membrane lipid hydroperoxides (LOOHs), including cholesterol- and phospholipid-derived species (ChOOHs, PLOOHs). LOOH translocation from cells to low-density lipoprotein (LDL) might sensitize the latter to free radical-mediated oxidative modification, an early event associated with atherogenesis. To test this, we examined the spontaneous transfer kinetics of various ChOOH species (5 alpha-OOH, 6 alpha-OOH, 6 beta-OOH, 7 alpha/7 beta-OOH) and various PLOOH groups (PCOOH, PEOOH, PSOOH, SMOOH) using photoperoxidized erythrocyte ghosts as model donors and freshly prepared LDL as an acceptor. LOOH departure or uptake was monitored by reverse-phase HPLC with reductive electrochemical detection. Mildly peroxidized ghost membranes transferred overall ChOOH and PLOOH to LDL with apparent first-order rate constants approximately 60 and approximately 35 times greater than those of the respective parent lipids. Individual ChOOH rate constants decreased in the following order: 7 alpha/7 beta-OOH > 5 alpha-OOH > 6 alpha-OOH > 6 beta-OOH. Kinetics for reverse transfer from LDL to ghosts followed the same trend, but rates were significantly higher for all species and their combined activation energy was lower (41 vs 85 kJ/mol). PLOOH transfer rate constants ranged from 4- to 15-fold lower than the composite ChOOH constant, their order being as follows: PCOOH approximately PEOOH approximately PSOOH > SMOOH. Similar PLOOH transfer kinetics were observed when LDL acceptor was replaced by unilamellar liposomes, consistent with desorption from the donor membrane being the rate-limiting step. The susceptibility of transfer LOOH-enriched LDL to Cu2+-induced chain peroxidative damage was assessed by monitoring the accumulation of conjugated dienes and products of free radical-mediated cholesterol oxidation. In both cases, transfer-acquired LOOHs significantly reduced the lag time for chain initiation relative to that observed using nonperoxidized ghosts. These findings are consistent with the idea that LDL can acquire significant amounts of "seeding" LOOHs via translocation from various donors in the circulation.  相似文献   
115.
We have studied mRNA expression for Class I HLA (human leukocyte antigen) on male germ cells by amplification of gene fragments in PCR techique and by Northern hybridization. RNA was extracted from fractionated gametogenic cells (isolated from testis) and reversely transcribed. Then, cDNA was amplified for specific HLA sequence (1151 bp) representing whole-length coding sequence (HLA, -A, -B, -C). The specificity of this product was confirmed in “nested” PCR of 400 bp gene fragment coding for alpha 2 domain, alpha 3 domain, and the transmembrane portion of Class I HLA. The results indicate minimal expression of classical Class I HLA on gametogenic cells. Northern hybridization with 669 bp cDNA fragment (spanning for alpha 3 domain, transmembrane, cytoplasmic, and 3′ untraslated region) resulted in a low intensity signal from gametogenic cell fractions and confirmed our findings obtained by PCR. The minimal expression of classical HLA antigens may create a neutral cover for the male reproductive system, thereby preventing an immunological response during germ cell differentiation. © 1994 Wiley-Liss, Inc.  相似文献   
116.
The interaction of propranolol with model phospholipid membranes was studied using various experimental techniques. The partition coefficient of propranolol in the negatively charged membranes of vesicles prepared from phosphatidylserine and phosphatidic acid was found to be more than 20-times higher than in neutral phosphatidylcholine membranes. Preferential interaction of propranolol with acidic phospholipid membranes was confirmed using the monolayer compression isotherm technique and the spin-labeling method. Phosphatidylserine monolayers were markedly expanded even at a relatively low drug concentration (5 · 10?6 M). In contrast, the effect of propranolol on phosphatidylcholine monolayers was much smaller, being detectable only at a higher concentration of the drug (1 · 10?4 M). Spin-labeling experiments show that propranolol exerts marked ordering effect on bilayers prepared from acidic phospholipids and does not change the order parameter of phosphatidylcholine membranes. The dependence of the propranolol fluorescence spectrum on the polarity of the solvent allowed us to identify the intercalation region of the drug in the membrane. The fluorophore moiety of propranolol was found to be localized in the lipid polar head groups region of the bilayer. The role of electrostatic and hydrophobic effects in propranolol-membrane interaction is discussed and the effect of propranolol on the ordering of phospholipid bilayers is compared with the effects of other anesthetic-like molecules.  相似文献   
117.
Risk factors for type 2 diabetes mellitus (T2DM) consist of a combination of an unhealthy, imbalanced diet and genetic factors that may interact with each other. Single nucleotide polymorphism (SNP) in the prospero homeobox 1 (PROX1) gene is a strong genetic susceptibility factor for this metabolic disorder and impaired β-cell function. As the role of this gene in T2DM development remains unclear, novel approaches are needed to advance the understanding of the mechanisms of T2DM development. Therefore, in this study, for the first time, postprandial changes in plasma metabolites were analysed by GC–MS in nondiabetic men with different PROX1 genotypes up to 5 years prior to prediabetes appearance. Eighteen contestants (12 with high risk (HR) and 6 with low risk (LR) genotype) participated in high-carbohydrate (HC) and normo-carbohydrate (NC) meal-challenge tests. Our study concluded that both meal-challenge tests provoked changes in 15 plasma metabolites (amino acids, carbohydrates, fatty acids and others) in HR, but not LR genotype carriers. Postprandial changes in the levels of some of the detected metabolites may be a source of potential specific early disturbances possibly associated with the future development of T2DM. Thus, accurate determination of these metabolites can be important for the early diagnosis of this metabolic disease.  相似文献   
118.
Lipid hydroperoxide species can be analyzed with high sensitivity and specificity, using reversed-phase high-performance liquid chromatography with reductive mode electrochemical detection on a mercury drop cathode [HPLC-ED(Hg)]. The purpose of this study was to examine different variables in the operation of HPLC-ED(Hg) and to select optimal conditions for the analysis of several biologically relevant peroxides, including species derived from cholesterol, cholesteryl linoleate, oleate, linoleate, and two synthetic phosphatidylcholines. Parameters such as operating potential and mobile-phase solvent proportions, electrolyte composition, and ionic strength were evaluated for each peroxide class. Under optimal conditions, we have achieved baseline separation of four cholesterol hydroperoxide species, not only from one another, but also from phospholipid hydroperoxides; detection limits were <0.3 pmol and <30 pmol for the cholesterol and phospholipid hydroperoxides, respectively.  相似文献   
119.
Apetri AC  Vanik DL  Surewicz WK 《Biochemistry》2005,44(48):15880-15888
One of the arguments in favor of the protein-only hypothesis of transmissible spongiform encephalopathies is the link between inherited prion diseases and specific mutations in the PRNP gene. One such mutation (Asp178 --> Asn) is associated with two distinct disorders: fatal familial insomnia or familial Creutzfeldt-Jakob disease, depending upon the presence of Met or Val at position 129, respectively. In this study, we have characterized the biophysical properties of recombinant human prion proteins (huPrP90-231) corresponding to the polymorphic variants D178N/M129 and D178N/V129. In comparison to the wild-type protein, both polymorphic forms of D178N huPrP show a greatly increased propensity for a conversion to beta-sheet-rich oligomers (at acidic pH) and thioflavine T-positive amyloid fibrils (at neutral pH). Importantly, the conversion propensity for the D178N variant is strongly dependent upon the M/V polymorphism at position 129, whereas under identical experimental conditions, no such dependence is observed for the wild-type protein. Amyloid fibrils formed by wild-type huPrP90-231 and the D178N variant are characterized by different secondary structures, and these structures are further modulated by residue 129 polymorphism. Although on the basis of only in vitro data, this study strongly suggests that polymorphism-dependent phenotypic variability of familial prion diseases may be linked to differences in biophysical properties of prion protein variants.  相似文献   
120.
The lipophilic dye merocyanine 540 (MC540) localizes primarily in the plasma membrane (PM) of tumor cells, where it can sensitize lethal photoperoxidative damage of potential therapeutic importance. We postulated (i) that chain peroxidation triggered by iron-catalyzed turnover of nascent hydroperoxides (LOOHs) generated by singlet oxygen ((1)O(2)) attack on PM lipids contributes significantly to overall cytolethality, and (ii) that nitric oxide (NO), a known scavenger of organic free radicals, would suppress this and, thus, act cytoprotectively. In accordance, irradiation of MC540-sensitized L1210 cells produced 5alpha-OOH, a definitive (1)O(2) adduct of PM cholesterol, which decayed during subsequent dark incubation with appearance of other signature peroxides, viz. free-radical-derived 7alpha/beta-OOH. Whereas chemical donor (SPNO or SNAP)-derived NO had little or no effect on post-irradiation 5alpha-OOH disappearance, it dose-dependently inhibited 7alpha/beta-OOH accumulation, consistent with interception of chain-carrying radicals arising from one-electron reduction of primary LOOHs. Using [(14)C]cholesterol as an L1210 PM probe, we detected additional after-light products of chain peroxidation, including diols (7alpha-OH, 7beta-OH) and 5,6-epoxides, the yields of which were enhanced by iron supplementation, but strongly suppressed by NO. Correspondingly, photoinitiated cell killing was significantly inhibited by NO introduced either immediately before or after light exposure. These findings indicate that prooxidant LOOH turnover plays an important role in photokilling and that NO, by intercepting propagating radicals, can significantly enhance cellular resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号