首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   35篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   19篇
  2013年   15篇
  2012年   17篇
  2011年   28篇
  2010年   16篇
  2009年   6篇
  2008年   22篇
  2007年   30篇
  2006年   28篇
  2005年   16篇
  2004年   21篇
  2003年   16篇
  2002年   18篇
  2001年   18篇
  2000年   20篇
  1999年   13篇
  1998年   17篇
  1997年   9篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   14篇
  1991年   15篇
  1990年   7篇
  1989年   11篇
  1988年   5篇
  1987年   8篇
  1986年   3篇
  1985年   10篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   11篇
  1978年   10篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
排序方式: 共有519条查询结果,搜索用时 140 毫秒
71.
The trans-sialidase from Trypanosoma cruzi catalyzes the transfer of a sialic acid moiety from sialylated donor substrates to the terminal galactose moiety of lactose and lactoside acceptors to yield alpha-(2,3)-sialyllactose or its derivatives with net retention of anomeric configuration. Through kinetic analyses in which the concentrations of two different donor aryl alpha-sialoside substrates and the acceptor substrate lactose were independently varied, we have demonstrated that this enzyme follows a ping-pong bi-bi kinetic mechanism. This is supported for both the native enzyme and a mutant (D59A) in which the putative acid/base catalyst has been replaced by the demonstration of the half-reaction in which a sialyl-enzyme intermediate is formed. Mass spectrometric analysis of the protein directly demonstrates the formation of a covalent intermediate, while the observation of release of a full equivalent of p-nitrophenol by the mutant in a pre-steady state burst provides further support. The active site nucleophile is confirmed to be Tyr342 by trapping of the sialyl-enzyme intermediate using the D59A mutant and sequencing of the purified peptic peptide. The role of D59 as the acid/base catalyst is confirmed by chemical rescue studies in which activity is restored to the D59A mutant by azide and a sialyl azide product is formed.  相似文献   
72.
Human pancreatic alpha-amylase (HPA) is a member of the alpha-amylase family involved in the degradation of starch. Some members of this family, including HPA, require chloride for maximal activity. To determine the mechanism of chloride activation, a series of mutants (R195A, R195Q, N298S, R337A, and R337Q) were made in which residues in the chloride ion binding site were replaced. Mutations in this binding site were found to severely affect the ability of HPA to bind chloride ions with no binding detected for the R195 and R337 mutant enzymes. X-ray crystallographic analysis revealed that these mutations did not result in significant structural changes. However, the introduction of these mutations did alter the kinetic properties of the enzyme. Mutations to residue R195 resulted in a 20-450-fold decrease in the activity of the enzyme toward starch and shifted the pH optimum to a more basic pH. Interestingly, replacement of R337 with a nonbasic amino acid resulted in an alpha-amylase that no longer required chloride for catalysis and has a pH profile similar to that of wild-type HPA. In contrast, a mutation at residue N298 resulted in an enzyme that had much lower binding affinity for chloride but still required chloride for maximal activity. We propose that the chloride is required to increase the pK(a) of the acid/base catalyst, E233, which would otherwise be lower due to the presence of R337, a positively charged residue.  相似文献   
73.
S G Withers  K Rupitz 《Biochemistry》1990,29(27):6405-6409
The Michaelis-Menten parameters (Vmax and Km) for turnover of an extensive series of deoxy and deoxyfluoro derivatives of alpha-D-glucopyranosyl phosphate by the alpha-glucan phosphorylase from potato tuber have been determined. Very large rate reductions are observed as a consequence of each substitution, primarily due to losses in specific binding interactions, most likely hydrogen bonding, at the enzymic transition state. Comparison of the Vmax/Km values so determined with those measured for rabbit muscle alpha-glucan phosphorylase [Street et al. (1989) Biochemistry 28, 1581] reveals an astonishingly similar specificity, especially in light of the phylogenetic separation of their host organisms. This indicates that very similar hydrogen-bonding interactions between the enzyme and the substrate must be present at the transition states for the two enzymic reactions; therefore, they have very similar active sites. Quantitation of this similarity is achieved by plotting the logarithm of the Vmax/Km value for each substrate analogue with the potato enzyme against the same parameter for the muscle enzyme, yielding straight lines (p = 0.998 and 0.999) of slope 1.0 and 1.2 for the deoxy and deoxyfluoro substrates, respectively. Since the correlation coefficient of such plots is a direct measure of the similarity of the two transition-state complexes, thus of the enzyme active sites, it can be used as a measure of active-site homology between the two enzymes. The extremely high homology observed in this case is consistent with the observed sequence homology at the active site.  相似文献   
74.
Several RNA-cleaving deoxyribozymes (DNAzymes) have been reported for efficient cleavage of purine-containing junctions, but none is able to efficiently cleave pyrimidine-pyrimidine (Pyr-Pyr) junctions. We hypothesize that a stronger Pyr-Pyr cleavage activity requires larger DNAzymes with complex structures that are difficult to isolate directly from a DNA library; one possible way to obtain such DNAzymes is to optimize DNA sequences with weak activities. To test this, we carried out an in vitro selection study to derive DNAzymes capable of cleaving an rC-T junction in a chimeric DNA/RNA substrate from DNA libraries constructed through chemical mutagenesis of five previous DNAzymes with a kobs of ∼ 0.001 min− 1 for the rC-T junction. After several rounds of selective amplification, DNAzyme descendants with a kobs of ∼ 0.1 min− 1 were obtained from a DNAzyme pool. The most efficient motif, denoted “CT10-3.29,” was found to have a catalytic core of ∼ 50 nt, larger than other known RNA-cleaving DNAzymes, and its secondary structure contains five short duplexes confined by a four-way junction. Several variants of CT10-3.29 exhibit a kobs of 0.3-1.4 min− 1 against the rC-T junction. CT10-3.29 also shows strong activity (kobs  > 0.1 min− 1) for rU-A and rU-T junctions, medium activity (> 0.01 min− 1) for rC-A and rA-T junctions, and weak activity (> 0.001 min− 1) for rA-A, rG-T, and rG-A junctions. Interestingly, a single-point mutation within the catalytic core of CT10-3.29 altered the pattern of junction specificity with a significantly decreased ability to cleave rC-T and rC-A junctions and a substantially increased ability to cleave rA-A, rA-T, rG-A, rG-T, rU-A, and rU-T junctions. This observation illustrates the intricacy and plasticity of this RNA-cleaving DNAzyme in dinucleotide junction selectivity. The current study shows that it is feasible to derive efficient DNAzymes for a difficult chemical task and reveals that DNAzymes require more complex structural solutions for such a task.  相似文献   
75.
Nine males with mean maximal oxygen consumption (VO2max) = 63.0 ml.kg-1.min-1, SD 5.7 and mean body fat = 10.6%, SD 3.1 each completed nine counterbalanced treatments comprising 20, 50 and 80 min of treadmill exercise at 30, 50 and 70% VO2max. The O2 deficit, 8 h excess post-exercise oxygen consumption (EPOC) and EPOC:O2 deficit ratio were calculated for all subjects relative to mean values obtained from 2 control days each lasting 9.3 h. The O2 deficit, which was essentially independent of exercise duration, increased significantly (P less than 0.05) with intensity such that the overall mean values for the three 30%, 50% and 70% VO2max workloads were 0.83, 1.89 and 3.09 l, respectively. While there were no significant differences (P greater than 0.05) between the three EPOCs after walking at 30% VO2max for 20 (1.01 l), 50 (1.43 l) and 80 min (1.04 l), respectively, the EPOC thereafter increased (P less than 0.05) with both intensity and duration such that the increments were much greater for the three 70% VO2max workloads (EPOC: 20 min = 5.68 l; 50 min = 10.04 l; 80 min = 14.59 l) than for the three 50% VO2max workloads (EPOC: 20 min = 3.14 l; 50 min = 5.19 l; 80 min = 6.10 l). An analysis of variance indicated that exercise intensity was the major determinant of the EPOC since it explained five times more of the EPOC variance than either exercise duration or the intensity times duration interaction. The mean EPOC:O2 deficit ratio ranged from 0.8 to 4.5 and generally increased with both exercise intensity and duration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
76.
J L Martin  L N Johnson  S G Withers 《Biochemistry》1990,29(48):10745-10757
The binding of T-state- and R-state-stabilizing ligands to the catalytic C site of T-state glycogen phosphorylase b has been investigated by crystallographic methods to study the interactions made and the conformational changes that occur at the C site. The compounds studied were alpha-D-glucose, 1, a T-state-stabilizing inhibitor of the enzyme, and the R-state-stabilizing phosphorylated ligands alpha-D-glucose 1-phosphate (2), 2-deoxy-2-fluoro-alpha-D-glucose 1-phosphate (3), and alpha-D-glucose 1-methylenephosphonate (4). The complexes have been refined, giving crystallographic R factors of less than 19%, for data between 8 and 2.3 A. Analysis of the refined structures shows that the glucosyl portions of the phosphorylated ligands bind in the same orientation as glucose and retain most of the interactions formed between glucose and the enzyme. However, the phosphates of the phosphorylated ligands adopt different conformations in each case; the stability of these conformations have been studied by using computational methods to rationalize the different binding modes. Binding of the phosphorylated ligands is accompanied by movement of C-site residues, most notably a shift of a loop out of the C site and toward the exterior of the protein. The C-site alterations do not include movement of Arg569, which has been observed in both the refined complex with 1-deoxy-D-gluco-heptulose 2-phosphate (5) [Johnson, L. N., et al (1990) J. Mol. Biol. 211, 645-661] and in the R-state enzyme [Barford, D. & Johnson, L. N. (1989) Nature 340, 609-616]. Refinement of the ligand complexes has also led to the observation of additional electron density for residues 10-19 at the N-terminus which had not previously been localized in the native structure. The conformation of this stretch of residues is different from that observed in glycogen phosphorylase a.  相似文献   
77.
The heterotrophic dinofiagellate, Crypthecodinium cohnii, cultured in a nutrient medium containing methionine-[CD3] incorporated deuterium into the newly synthesized 4α-monomethyl compound dinosterol (4α,23,24-trimethylcholest-22-en-3β-ol). The MS fragmentation pattern indicated that the C-23 methyl group contained three deuterium atoms and was introduced intact by transmethylation from methionine. The C-24 methyl group contained only two deuterium atoms which is consistent with the production of a 24-methylenesterol intermediate which is subsequently reduced to give the 24-methyl side chain. Mechanisms are proposed to account for the production of the dinosterol side chain.  相似文献   
78.
Abstract  Cleopus japonicus Wingelmüller (Coleoptera: Curculionidae) is being considered for release to control buddleia Buddleja davidii in New Zealand. As part of the pre-release testing, Moroccan and Irish biotypes of the solitary endoparasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae) were evaluated for potential non-target impacts on adult C. japonicus should release occur. Laboratory experiments evaluated both the behavioural and physiological suitability of C. japonicus to both biotypes of the parasitoid. Parasitoid behavioural attraction was assessed using the pathenogenic bacterium Serratia marcescens (Enterobactereaceae), as an indicator of ovipositor penetration. Physiological suitability was assessed by comparing parasitism of C. japonicus with the natural hosts of the respective parasitoid biotypes. The parasitoid-bacteria study showed that C. japonicus was behaviourally acceptable to both Moroccan and Irish M. aethiopoides , with the two experiments producing 34% and 8% mortality, respectively. Cleopus japonicus did not support development of either Moroccan or Irish M. aethiopoides biotypes. None of the weevils dissected at the end of the experiment contained immature parasitoids. Comparison between unexposed and parasitoid-exposed C. japonicus found no difference in premature mortality during the experiment nor in the number of fully reproductive females at its conclusion. The results of this study predict that should C. japonicus be released, the potential impact of M. aethiopoides on field populations will be negligible.  相似文献   
79.
Context-dependent memory: colour versus odour   总被引:2,自引:1,他引:1  
Pointer  SC; Bond  NW 《Chemical senses》1998,23(3):359-362
An olfactory stimulus and a visual stimulus were employed in a context- dependent memory study using a prose passage as the to-be-remembered item. Ninety-five university students (aged 17-35 years) learned the passage of prose in the presence of one of the stimuli and were then asked to recall the passage with the original context either reinstated or not reinstated. The results revealed a significant context-dependent memory effect for the olfactory cue but not for the visual cue. They demonstrate support for the effectiveness of odours as context cues and it is suggested that context-dependent memory processes may underlie the formation and retrieval of odour-evoked autobiographical memories.   相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号