首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   50篇
  492篇
  2019年   4篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   11篇
  2014年   15篇
  2013年   22篇
  2012年   16篇
  2011年   18篇
  2010年   7篇
  2009年   20篇
  2008年   22篇
  2007年   21篇
  2006年   12篇
  2005年   23篇
  2004年   10篇
  2003年   12篇
  2002年   11篇
  2001年   13篇
  2000年   10篇
  1999年   12篇
  1998年   7篇
  1997年   7篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   8篇
  1990年   11篇
  1989年   17篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   5篇
  1983年   8篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   12篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1972年   7篇
  1971年   4篇
  1970年   4篇
  1968年   8篇
  1967年   3篇
排序方式: 共有492条查询结果,搜索用时 15 毫秒
41.
42.
Nuclear transfer technology allows for the reprogramming of somatic cells, and the production of embryonic stem cells and animals that are genetically identical in terms of nuclear DNA to the parental somatic cell. It is assumed that these products of nuclear transfer technology will be immunologically compatible to each other in spite of the fact that there are data that show differences in the expression patterns and phenotypes between animals produced by nuclear transfer. We have produced a series of cloned pigs from embryonic fibroblasts. Microsatellite analysis was used to confirm that the clones were genetically identical. Skin transplants were performed to assess immunological reactivity. Skin transplants between genetically identical cloned pigs were accepted, whereas third party grafts were rejected. Histological analysis of the grafts showed edema and mononuclear cell infiltrates in the recipient's skin in rejected grafts and not in grafts that were accepted. Our data supports the notion that genetically identical cloned pigs are immunologically compatible.  相似文献   
43.
The skeleton constantly interacts and adapts to the physical world. We have previously reported that physiologically relevant mechanical forces lead to small repairable membrane injuries in bone-forming osteoblasts, resulting in release of ATP and stimulation of purinergic (P2) calcium responses in neighboring cells. The goal of this study was to develop a theoretical model describing injury-related ATP and ADP release, their extracellular diffusion and degradation, and purinergic responses in neighboring cells. After validation using experimental data for intracellular free calcium elevations, ATP, and vesicular release after mechanical stimulation of a single osteoblast, the model was scaled to a tissue-level injury to investigate how purinergic signaling communicates information about injuries with varying geometries. We found that total ATP released, peak extracellular ATP concentration, and the ADP-mediated signaling component contributed complementary information regarding the mechanical stimulation event. The total amount of ATP released governed spatial factors, such as the maximal distance from the injury at which purinergic responses were stimulated. The peak ATP concentration reflected the severity of an individual cell injury, allowing to discriminate between minor and severe injuries that released similar amounts of ATP because of differences in injury repair, and determined temporal aspects of the response, such as signal propagation velocity. ADP-mediated signaling became relevant only in larger tissue-level injuries, conveying information about the distance to the injury site and its geometry. Thus, we identified specific features of extracellular ATP and ADP spatiotemporal signals that depend on tissue mechanoresilience and encode the severity, scope, and proximity of the mechanical stimulus.  相似文献   
44.
We combine total internal reflection fluorescence structured illumination microscopy with spatiotemporal image correlation spectroscopy to quantify the flow velocities and directionality of filamentous-actin at the T cell immunological synapse. These techniques demonstrate it is possible to image retrograde flow of filamentous-actin at superresolution and provide flow quantification in the form of velocity histograms and flow vector maps. The flow was found to be retrograde and radially directed throughout the periphery of T-cells during synapse formation.Many biological processes are now being visualized with the use of superresolution fluorescence microscopy techniques. However, localization-based techniques primarily rely on fixed or slow moving samples to permit the collection of structural information. The 10-fold gains in resolution afforded by these superresolution techniques are usually possible through sacrificing the factors that originally made microscopy such a powerful tool: the ability to image live cells. In the case of stimulated emission depletion imaging, the scanning approach associated with this technique may fail to detect faster molecular events when imaging whole cellular regions.Structured illumination microscopy (SIM) is an alternative to these methods (1). It increases the resolution of conventional fluorescence microscopy twofold; it has the advantage of using a wide-field system, providing fast acquisition speeds of whole cells with relatively low laser powers; and it is compatible with standard fluorophores. By using a physical grating to produce interference patterns from a laser, periodic illumination is created. This patterned illumination causes information from higher spatial frequencies to be downmodulated (i.e., shifted) into the optical transfer function (support region) of the lens, resulting in higher-resolution spatial information being captured than is ordinarily obtainable.To quantify the directional motion of intracellular molecules, spatiotemporal image correlation spectroscopy (STICS (2)) was applied. Using spatial image correlation in time, STICS measures the similarity of pixels with those surrounding in lagging frames via a correlation function. The correlation function provides information on both flow velocities and directionality, while discounting static structures through the immobile object filter, achieved by subtracting a moving average of pixel intensities.The formation of an immunological synapse between T cells and antigen-presenting cells is a process requiring many dynamic (3) and subdiffraction-limited clustering events (4–6) to take place. The polymerization of actin is important for the spreading of cells over their target antigen-presenting cells (7), as well as cell mobility and migration (8). Retrograde flow of densely meshed cortical actin is observed at the basal membrane of synapse-forming T cells, where it may have a role in the corralling and clustering of signaling molecules at the plasma membrane (9), as well as at the leading edge of migrating cells (10). Filamentous actin is an extremely dynamic (7), densely packed, and thin (7-nm) structure (11,12).Here, we perform STICS on SIM data acquired on a total internal reflection fluorescence (TIRF) microscope system, which generated an evanescent field of 75-nm depth for excitation. To our knowledge, this is the first demonstration of an image correlation approach to quantify molecular dynamics on subresolution length scales using wide-field microscopy. To demonstrate the technique, we analyze two-dimensional actin flows in CD4+ T cells during immunological synapse formation, performed after cross-linking of antigen T cell receptors on a coverslip coated with specific antibodies.Fig. 1 a shows a schematic of the TIRF SIM setup. Excitation light (488 nm) passes through a polarizing module and then a phase-grating block, producing diffracted beams. These are then passed through a diffraction filter module to isolate the −1 and +1 order laser beams. These first-order laser beams are angled through the objective to produce total internal reflection conditions at the glass-water interface. The two evanescent waves interfere at the sample, producing structured illumination. The setup then produces lateral and rotational shifts through three orientations, producing nine raw images containing higher spatial frequencies than can normally be acquired by an objective using standard light microscopy. Fig. 1 b demonstrates the increased resolution obtained from TIRF SIM. Shown are the collected Fourier frequencies compared to those of a conventional microscope (dotted red line). Resolution was also measured using sparse 100-nm diameter fluorescent beads. Fig. 1 c shows a magnified image of these beads from which a line profile was obtained (yellow arrow). The full width at half-maximum of this profile (Fig. 1 d) gives a lateral resolution for the system of 120 nm.Open in a separate windowFigure 1(a) Schematic of the TIRF SIM setup. (b) Demonstration of the doubling of spatial resolution of collected frequencies through a Fourier transform (superimposed red circle demonstrating regular spatial frequency limits). (c) SIM reconstructed image of 100-nm bead (scale bar 0.5 μm). (d) (Plotted line) Bead showing full width at half-maximum of 120 nm.We then applied STICS analysis to quantify actin flow in T cell synapses acquired using TIRF SIM (Fig. 2). Fig. 2 a shows a schematic of the STICS analysis. From the raw data, immobile objects are first filtered by subtracting a moving average of the pixel values. Vector maps were obtained from correlation analysis of the time-series as previously published in Hebert et al. (2) and Brown et al. (13). Fig. 2 b shows a reconstructed TIRF SIM image of a mature T cell immunological synapse, representative of a time-point derived from the time series acquired at 1.28 fps (see Movie S1 in the Supporting Material). From this reconstructed image, two representative regions have been selected. In these regions, pseudo-colored actin flow vectors are overlaid onto the fluorescence intensity image. These range in magnitude from 0.01 μm/min (blue) to 5.61 μm/min (red). It can be observed that all flow vectors are directed radially toward the synapse center. A histogram of this flow is shown in Fig. 2 c. The histogram shows a peak retrograde flow velocity of 1.91 ± 1.27 μm/min. These data are representative of n = 7 T-cell synapses imaged by TIRF SIM.Open in a separate windowFigure 2(a) STICS analysis, performed by isolating mobile from immobile structures through a moving average filter (i) and binning a subset of pixels into blocks of superpixels (ii); the STICS software correlates spatial fluorescence fluctuations through time (iii). The code then outputs vector maps showing directionality and flow velocities. (b) TIRF SIM image of actin flow in a T cell 5 min after contact with a stimulatory coverslip. (Zoomed regions) Retrograde actin flow at the synapse periphery. (c) Histograms showing flow speed statistics of vectors from T-cell synapses (n = 7).  相似文献   
45.
46.
47.
Bovine cerebellar membranes immobilized on 96-well microtiter plates provide receptors for 125I-labeled endothelin-1 as the basis for a competitive binding assay. Adsorption of the membranes to a surface does not significantly alter the ligand-receptor interaction and reduces non-specific binding to 3-7% of total binding compared to 10-20% for a filtration technique. Considerable savings in reagents are realized since assays can be performed in 100 microliter volumes with only 10-20 micrograms of membrane protein. The 96-well format allows the rapid quantitation of large numbers of samples, and the assay is especially attractive in that it utilizes readily available reagents and equipment without the need for specific antibodies. The endothelin-receptor-based assay may be used to measure conversion of big endothelin-1 to endothelin-1 in aqueous assays. Since the presence of serum does not affect this method, tissue culture medium may be directly analyzed for endothelin production by cultured cells. All three isoforms of endothelin are detected, and the specificity of the receptor is retained since fragments and precursor forms of endothelin are not recognized. In cases where multiple endothelin isoforms may be present or where specificity of binding is in question, this assay may be used in conjunction with high pressure liquid chromatography to distinguish active peptides.  相似文献   
48.
An adaptable standard for protein export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
Wiseman RL  Powers ET  Buxbaum JN  Kelly JW  Balch WE 《Cell》2007,131(4):809-821
To provide an integrated view of endoplasmic reticulum (ER) function in protein export, we have described the interdependence of protein folding energetics and the adaptable biology of cellular protein folding and transport through the exocytic pathway. A simplified treatment of the protein homeostasis network and a formalism for how this network of competing pathways interprets protein folding kinetics and thermodynamics provides a framework for understanding cellular protein trafficking. We illustrate how folding and misfolding energetics, in concert with the adjustable biological capacities of the folding, degradation, and export pathways, collectively dictate an adaptable standard for protein export from the ER. A model of folding for export (FoldEx) establishes that no single feature dictates folding and transport efficiency. Instead, a network view provides insight into the basis for cellular diversity, disease origins, and protein homeostasis, and predicts strategies for restoring protein homeostasis in protein-misfolding diseases.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号