首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   572篇
  免费   43篇
  2023年   2篇
  2022年   3篇
  2021年   14篇
  2020年   6篇
  2019年   10篇
  2018年   17篇
  2017年   9篇
  2016年   22篇
  2015年   31篇
  2014年   45篇
  2013年   34篇
  2012年   54篇
  2011年   60篇
  2010年   33篇
  2009年   32篇
  2008年   37篇
  2007年   30篇
  2006年   20篇
  2005年   27篇
  2004年   21篇
  2003年   25篇
  2002年   17篇
  2000年   3篇
  1999年   4篇
  1998年   6篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1977年   3篇
  1974年   2篇
  1972年   2篇
  1968年   1篇
  1966年   1篇
  1957年   1篇
  1956年   2篇
  1955年   1篇
  1952年   1篇
  1950年   1篇
  1949年   1篇
  1939年   1篇
  1935年   1篇
  1927年   1篇
排序方式: 共有615条查询结果,搜索用时 31 毫秒
101.
Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ? 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile.  相似文献   
102.
The C-terminal domain, Cp, of the Semliki Forest virus capsid protein, known for its rapid, efficient and chaperone-independent folding, was used to measure bulk fluid flow in the secretory pathway of Chinese hamster ovary cells. Being small, nonglycosylated, soluble and cytoplasmic in origin, Cp was not likely to interact with lectins, cargo receptors and retention factors. Using pulse-chase analysis, we observed that translocation into the endoplasmic reticulum resulted in rapid and efficient folding and transport of the newly synthesized Cp protein to the extracellular medium. The first Cp molecules were secreted 15 min after synthesis, which is the fastest transport of a protein so far recorded in mammalian cells. The rate constant of secretion was 1.2% per min, which amounts to an estimated bulk flow rate of about 155 coat protein II (COPII) vesicles per second. Transport was independent of expression level, and blocked by CI-976, brefeldin A and ATP depletion indicating that it depended on COPII vesicle formation, and followed the classical secretory pathway. In polarized Madin-Darby canine kidney cells, the secretion rate was similar but occurred mainly apically. The results demonstrated that fluid flow in the secretory pathway is fast, and can therefore play a significant role in the secretion of soluble secretory products.  相似文献   
103.
104.
Marine sponges constitute major parts of coral reefs and deep‐water communities. They often harbour high amounts of phylogenetically and physiologically diverse microbes, which are so far poorly characterized. Many of these sponges regulate their internal oxygen concentration by modulating their ventilation behaviour providing a suitable habitat for both aerobic and anaerobic microbes. In the present study, both aerobic (nitrification) and anaerobic (denitrification, anammox) microbial processes of the nitrogen cycle were quantified in the sponge Geodia barretti and possible involved microbes were identified by molecular techniques. Nitrification rates of 566 nmol N cm?3 sponge day?1 were obtained when monitoring the production of nitrite and nitrate. In support of this finding, ammonia‐oxidizing Archaea (crenarchaeotes) were found by amplification of the amoA gene, and nitrite‐oxidizing bacteria of the genus Nitrospira were detected based on rRNA gene analyses. Incubation experiments with stable isotopes (15NO3 and 15NH4+) revealed denitrification and anaerobic ammonium oxidation (anammox) rates of 92 nmol N cm?3 sponge day?1 and 3 nmol N cm?3 sponge day?1 respectively. Accordingly, sequences closely related to ‘Candidatus Scalindua sorokinii’ and ‘Candidatus Scalindua brodae’ were detected in 16S rRNA gene libraries. The amplification of the nirS gene revealed the presence of denitrifiers, likely belonging to the Betaproteobacteria. This is the first proof of anammox and denitrification in the same animal host, and the first proof of anammox and denitrification in sponges. The close and complex interactions of aerobic, anaerobic, autotrophic and heterotrophic microbial processes are fuelled by metabolic waste products of the sponge host, and enable efficient utilization and recirculation of nutrients within the sponge–microbe system. Since denitrification and anammox remove inorganic nitrogen from the environment, sponges may function as so far unrecognized nitrogen sinks in the ocean. In certain marine environments with high sponge cover, sponge‐mediated nitrogen mineralization processes might even be more important than sediment processes.  相似文献   
105.
In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.  相似文献   
106.

Background

Human multipotent mesenchymal stromal cells (MSC) can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity.

Results

After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation.

Conclusion

Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.  相似文献   
107.
108.
Warburg Micro syndrome and Martsolf syndrome are clinically overlapping autosomal recessive conditions characterized by congenital cataracts, microphthalmia, postnatal microcephaly, and developmental delay. The neurodevelopmental and ophthalmological phenotype is more severe in Warburg Micro syndrome in which cerebral malformations and severe motor and mental retardation are common. While biallelic loss-of-function mutations in RAB3GAP1 are present in the majority of patients with Warburg Micro syndrome; a hypomorphic homozygous splicing mutation of RAB3GAP2 has been reported in a single family with Martsolf syndrome. Here, we report a novel homozygous RAB3GAP2 small in-frame deletion, c.499_507delTTCTACACT (p.Phe167_Thr169del) that causes Warburg Micro syndrome in a girl from a consanguineous Turkish family presenting with congenital cataracts, microphthalmia, absent visually evoked potentials, microcephaly, polymicrogyria, hypoplasia of the corpus callosum, and severe developmental delay. No RAB3GAP2 mutations were detected in ten additional unrelated patients with RAB3GAP1-negative Warburg Micro syndrome, consistent with further genetic heterogeneity. In conclusion, we provide evidence that RAB3GAP2 mutations are not specific to Martsolf syndrome. Rather, our findings suggest that loss-of-function mutations of RAB3GAP1 as well as functionally severe RAB3GAP2 mutations cause Warburg Micro syndrome while hypomorphic RAB3GAP2 mutations can result in the milder Martsolf phenotype. Thus, a phenotypic severity gradient may exist in the RAB3GAP-associated disease continuum (the “Warburg–Martsolf syndrome”) which is presumably determined by the mutant gene and the nature of the mutation.  相似文献   
109.
The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings.  相似文献   
110.
Cell damage during sampling and quenching for metabolome analysis have been investigated at whole sample level using an OD-based method and ATP loss investigation, and at single cell level by means of flow cytometry. Escherichia coli was cultivated in shake flasks and sampled into several cold quenching solutions during exponential growth phase varying quenching solution composition and sampling temperature. For single cell analysis, the samples were incubated with selective propidium iodide dye and analysed via flow cytometry to differentiate between intact and damaged cells. It was found that every combination of quenching solution, temperature, or cooling rate tested influenced the E. coli cell membrane integrity indicating rupture which will not only let the dye in, but also intracellular ATP out of the cells, which is not desired in in vivo metabolome analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号