首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   134篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   10篇
  2019年   14篇
  2018年   15篇
  2017年   17篇
  2016年   28篇
  2015年   59篇
  2014年   58篇
  2013年   60篇
  2012年   86篇
  2011年   102篇
  2010年   55篇
  2009年   49篇
  2008年   75篇
  2007年   69篇
  2006年   59篇
  2005年   69篇
  2004年   60篇
  2003年   64篇
  2002年   51篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   18篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1264条查询结果,搜索用时 125 毫秒
961.
Photoaffinity labeling techniques were used to identify insulin-binding components of the plasma membrane in insulin-responsive, monolayer-cultured hepatoma cells. The activated, photosensitive reagent, an n-hydroxysuccinimide ester of 4-azidobenzoic acid, was coupled with highly purifed insulin, and the hormone derivative was subsequently iodinated, bound to cell surface receptors of intact H4 cells, and photoactivatcd. After dissolution of the cells, labeled proteins were analyzed by SDS/polyacrylamide gel electrophoresis under reducing conditions. The main labeled band exhibited an apparent molecular weight of 130,000. Two minor components of apparent mol wt 95,000 and 40,000 were also identified. Specific labeling of all 3 bands was inhibited by simultaneous incubation of the cells with native insulin, but not by the heterologous hormone, glucagon, prior to photoactivation. Binding of azidobenzoyl-insulin to H4 cells was time-dependent, as was the correlated labeling of receptor components. Band-labeling by the photosensitive insulin derivative was totally light-dependent; spontaneous covalent linking of insulin and receptor was not observed. The labeled receptor-related proteins were not degraded by the cells under our experimental conditions.  相似文献   
962.
Peroxisomes are organelles that sequester certain metabolic pathways; many of these pathways generate H2O2, which can damage proteins. However, little is known about how damaged or obsolete peroxisomal proteins are degraded. We exploit developmentally timed peroxisomal content remodeling in Arabidopsis thaliana to elucidate peroxisome-associated protein degradation. Isocitrate lyase (ICL) is a peroxisomal glyoxylate cycle enzyme necessary for early seedling development. A few days after germination, photosynthesis begins and ICL is degraded. We previously found that ICL is stabilized when a peroxisome-associated ubiquitin-conjugating enzyme and its membrane anchor are both mutated, suggesting that matrix proteins might exit the peroxisome for ubiquitin-dependent cytosolic degradation. To identify additional components needed for peroxisome-associated matrix protein degradation, we mutagenized a line expressing GFP–ICL, which is degraded similarly to endogenous ICL, and identified persistent GFP-ICL fluorescence (pfl) mutants. We found three pfl mutants that were defective in PEROXIN14 (PEX14/At5g62810), which encodes a peroxisomal membrane protein that assists in importing proteins into the peroxisome matrix, indicating that proteins must enter the peroxisome for efficient degradation. One pfl mutant was missing the peroxisomal 3-ketoacyl-CoA thiolase encoded by the PEROXISOME DEFECTIVE1 (PED1/At2g33150) gene, suggesting that peroxisomal metabolism influences the rate of matrix protein degradation. Finally, one pfl mutant that displayed normal matrix protein import carried a novel lesion in PEROXIN6 (PEX6/At1g03000), which encodes a peroxisome-tethered ATPase that is involved in recycling matrix protein receptors back to the cytosol. The isolation of pex6-2 as a pfl mutant supports the hypothesis that matrix proteins can exit the peroxisome for cytosolic degradation.  相似文献   
963.
Mutations affecting acetylcholine receptors have been causally linked to the development of congenital myasthenic syndromes (CMS) in humans resulting from neuromuscular transmission defects. In an undergraduate Molecular Neurobiology course, the molecular basis of CMS was explored through study of a Caenorhabditis elegans model of the disease. The nicotinic acetylcholine receptor (nAChR), located on the postsynaptic muscle cell membrane, contains a pentameric ring structure comprised of five homologous subunits. In the nematode C. elegans, unc-63 encodes an α subunit of nAChR. UNC-63 is required for the function of nAChR at the neuromuscular junction. Mutations in unc-63 result in defects in locomotion and egg-laying and may be used as models for CMS. Here, we describe the responses of four unc-63 mutants to the cholinesterase inhibitor pyridostigmine bromide (range 0.9–15.6 mM in this study), a treatment for CMS that mitigates deficiencies in cholinergic transmission by elevating synaptic ACh levels. Our results show that 15.6 mM pyridostigmine bromide enhanced mobility in two alleles, depressed mobility in one allele and in N2, while having no effect on the fourth allele. This indicates that while pyridostigmine bromide may be effective at ameliorating symptoms of CMS in certain cases, it may not be a suitable treatment for all individuals due to the diverse etiology of this disease. Students in the Molecular Neurobiology course enhanced their experience in scientific research by conducting an experiment designed to increase understanding of genetic defects of neurological function.  相似文献   
964.
Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells.  相似文献   
965.
966.
Aim Conservation practitioners use biological surveys to ascertain whether or not a site is occupied by a particular species. Widely used statistical methods estimate the probability that a species will be detected in a survey of an occupied site. However, these estimates of detection probability are alone not sufficient to calculate the probability that a species is present given that it was not detected. The aim of this paper is to demonstrate methods for correctly calculating (1) the probability a species occupies a site given one or more non‐detections, and (2) the number of sequential non‐detections necessary to assert, with a pre‐specified confidence, that a species is absent from a site. Location Occupancy data for a tree frog in eastern Australia serve to illustrate methods that may be applied anywhere species’ occupancy data are used and detection probabilities are < 1. Methods Building on Bayesian expressions for the probability that a site is occupied by a species when it is not detected, and the number of non‐detections necessary to assert absence with a pre‐specified confidence, we estimate occupancy probabilities across tree frog survey locations, drawing on information about where and when the species was detected during surveys. Results We show that the number of sequential non‐detections necessary to assert that a species is absent increases nonlinearly with the prior probability of occupancy, the probability of detection if present, and the desired level of confidence about absence. Main conclusions If used more widely, the Bayesian analytical approaches illustrated here would improve collection and interpretation of biological survey data, providing a coherent way to incorporate detection probability estimates in the design of minimum survey requirements for monitoring, impact assessment and distribution modelling.  相似文献   
967.
968.
Summary We have analyzed the effects of high doses of cyclophosphamide (Cy) on primary and secondary antitumor immune response against immunogenic (tum) variants of Lewis lung carcinoma (3LL) treated in vitro with UV light. Normal mice and mice previously immunized with tum clones were inoculated i.p. with Cy (200 mg/kg body weight) and 24 h later challenged intrafootpad with tum or parental 3LL cells. Cy treatment suppressed the primary immune response of normal animals and allowed the growth of tum cells. In contrast, Cy-treated immune mice rejected the tumor challenge. The in vivo treatment with Cy decreased the total number of lymphoid cells in the spleens, as well as the proportion of B lymphocytes; however, it increased the percentage of both Lyt2+ and L3T4+ lymphocytes. Thus, the immunosuppressive effects of Cy on the primary antitumor response could not be attributed to elimination of major T lymphocyte subpopulations. Although the treatment of immune mice with Cy did not significantly impair their antitumor resistance, nor the proportion of Lyt2+ and L3T4+ lymphocytes in their spleens, the in vitro generation of cytotoxic T lymphocytes (CTL) was markedly reduced.After Cy treatment, the proliferative ability of spleen cells in response to interleukin-2 (IL-2) was substantially impaired. Using monoclonal antibodies to the IL-2 receptor, we found that Cy-treated T lymphocytes failed to fully express the IL-2 receptor following in vitro stimulation with irradiated tumor cells. In line with these findings, the in vitro generation of CTL was not restored by addition of recombinant IL-2 to the cultures. In vivo experiments using purified functional subsets of immune T cells showed that Lyt1+, but not Lyt2+ lymphocytes were able to transfer antitumor immunity in normal irradiated recipients.Therefore, since Ly1+ T lymphocytes were responsible for the antitumor resistance in vivo, the Cy-induced impairment of CTL generation did not affect the ability of immune mice to reject a secondary tumor challenge.This project has been funded at least in part with Federal funds from the Department of Health and Human Services, under contract number NO1-CO-23910 with Resources, Inc. The contents of this publication do not necessarily reflect the view or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government  相似文献   
969.
Four enantiopure cytisine-inspired scaffolds can be accessed via a versatile pyrrolidine template derived from a stereocontrolled [3+2] azomethine ylide–alkene cycloaddition. Differential ester protection allows for the selective formation of either a bridged bicyclic or tricyclic scaffold via pyridone cyclization. Solid-phase diversification of the pyridone scaffolds yielded a diverse library of 15,000 compounds enabling the discovery of a novel class of Bcl-2 inhibitors.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号