首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   134篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   10篇
  2019年   14篇
  2018年   15篇
  2017年   17篇
  2016年   28篇
  2015年   59篇
  2014年   58篇
  2013年   60篇
  2012年   86篇
  2011年   102篇
  2010年   55篇
  2009年   49篇
  2008年   75篇
  2007年   69篇
  2006年   59篇
  2005年   69篇
  2004年   60篇
  2003年   64篇
  2002年   51篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   18篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1264条查询结果,搜索用时 15 毫秒
201.
Over geologic time, the water in the Bonneville basin has risen and  fallen, most dramatically as freshwater Lake Bonneville lost enormous volume 15,000–13,000 years ago and became the modern day Great Salt Lake. It is likely that paleo-humans lived along the shores of this body of water as it shrunk to the present margins, and native peoples inhabited the surrounding desert and wetlands in recent times. Nineteenth century Euro-American explorers and pioneers described the geology, geography, and flora and fauna of Great Salt Lake, but their work attracted white settlers to Utah, who changed the lake immeasurably. Human intervention in the 1950s created two large sub-ecosystems, bisected by a railroad causeway. The north arm approaches ten times the salinity of sea water, while the south arm salinity is a meager four times that of the oceans. Great Salt Lake was historically referred to as sterile, leading to the nickname “America’s Dead Sea.” However, the salty brine is teaming with life, even in the hypersaline north arm. In fact, scientists have known that this lake contains a diversity of microscopic lifeforms for more than 100 years. This essay will explore the stories of the people who observed and researched the salty microbiology of Great Salt Lake, whose discoveries demonstrated the presence of bacteria, archaea, algae, and protozoa that thrive in this lake. These scientists documented the lake’s microbiology as the lake changed, with input from human waste and the creation of impounded areas. Modern work on the microbiology of Great Salt Lake has added molecular approaches and illuminated the community structures in various regions, and fungi and viruses have now been described. The exploration of Great Salt Lake by scientists describing these tiny inhabitants of the brine illuminate the larger terminal lake with its many facets, anthropomorphic challenges, and ever-changing shorelines.  相似文献   
202.
This is the second of two papers which together are the first comprehensive ultrastructural report of meiosis in a red alga. Many details of the meiotic process in Dasya baillouviana (Gmelin) Montagne are the same as those reported previously for mitotic cells in ceramialian red algae, but several characteristics seem unique to meiotic cells. The nucleus and nucleolus of meiotic cells are larger than those of mitotic cells and large accumulations of smooth ER are often found at the division poles during meiosis 1. The function of the ER accumulations is unknown. Importantly, both interkinesis and a simultaneous division of two separate nuclei during meiosis II was demonstrated. These new observations fail to support earlier speculation on higher red algae for a “uninuclear” meiosis (both nuclear divisions within the same nuclear envelope). However, following meiosis II the four nuclei migrate centripetally and possibly fuse in the center of the tetrasporangium. This post-division nuclear maneuvering is not understood, but our interpretation accounts for the earlier and erroneous impression of “uninuclear” meiosis. Perhaps the most important aspect of meiosis observed in Dasya is its basic adherence to the pattern commonly seen in higher plants and animals. This conservatism of the meiotic process lends further skepticism to the belief that red algae are extremely “primitive” organisms, although they undoubtedly represent a very “ancient” group of eukaryotic plants.  相似文献   
203.
Each offspring born into three captive groups of rhesus monkeys (Macaca mulatta) during the spring of 1981 was assigned (1) a most probable behavioural father and (2) a subset of all possible behavioural fathers, on the basis of intensive observations of sexual activity during the 1980 fall breeding season. These predictions were then compared with true paternity determined by electrophoretic and serological analyses of polymorphic blood proteins of mothers, infants, and all adult and subadult males. Coincidence between the assignments of paternity based upon behavioural and biochemical data occurred no more frequently than chance would allow. Furthermore, there were no significant relationships between biochemical and behavioural rankings of overall reproductive success. It was concluded that conventional estimates of sexual activity during the breeding season are not a reliable indicator of true paternity and relative reproductive success in rhesus macaques.  相似文献   
204.
A method is presented that uses beta-strand interactions at both the sequence and the atomic level, to predict beta-structural motifs of protein sequences. A program called Wrap-and- Pack implements this method and is shown to recognize beta-trefoils, an important class of globular beta-structures, in the Protein Data Bank with 92% specificity and 92.3% sensitivity in cross-validation. It is demonstrated that Wrap-and-Pack learns each of the ten known SCOP beta-trefoil families, when trained primarily on beta-structures that are not beta-trefoils, together with three-dimensional structures of known beta-trefoils from outside the family. Wrap-and-Pack also predicts many proteins of unknown structure to be beta-trefoils. The computational method used here may generalize to other beta-structures for which strand topology and profiles of residue accessibility are well conserved.  相似文献   
205.
During a 2-year period, 4,968 strains of beta-hemolytic streptococci were examined for the clinical source distribution and bacitracin sensitivity of each group. In the upper respiratory tract, groups A (51.7%) and C (20.4%) accounted for most of the isolates, and in wounds and exudates group A (79.1%) made up most of the isolates. Group B (71.2%) was the major component of isolates from the genitorinary tract and, while composing 29.3% of the lower respiratory tract isolates, competed with group A (18.8%) and the nongroupables (22.8%) for supremacy. Bacitracin screening showed that 0.5% of group A streptococci were resistant, and sensitive non-group A isolates were group B (2.6%), group C (6.0%), group G (8.0%), and the nongroupables (2.2%). It was found that those groups which were most predominant in wounds and the upper respiratory tract gave the highest rate of false positives with bacitracin, whereas the predominant group of the genitourinary tract gave the lowest rate of false positives.  相似文献   
206.
Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442–887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30‐year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios.  相似文献   
207.
Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylami-nofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6-3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of ~2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of ~2.7% in 10–20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites.  相似文献   
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号