首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   134篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   10篇
  2019年   14篇
  2018年   15篇
  2017年   17篇
  2016年   28篇
  2015年   59篇
  2014年   58篇
  2013年   60篇
  2012年   86篇
  2011年   102篇
  2010年   55篇
  2009年   49篇
  2008年   75篇
  2007年   69篇
  2006年   59篇
  2005年   69篇
  2004年   60篇
  2003年   64篇
  2002年   51篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   18篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   10篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   11篇
  1981年   9篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1974年   8篇
  1973年   4篇
  1967年   3篇
排序方式: 共有1264条查询结果,搜索用时 203 毫秒
141.
Microglial cells are monocytic lineage cells that reside in the CNS and have the capacity to become activated during various pathological conditions. Although it was demonstrated that activation of microglial cells could be achieved in vitro by the engagement of CD40-CD40L interactions in combination with proinflammatory cytokines, the exact factors that mediate activation of microglial cells in vivo during CNS autoimmunity are ill-defined. To investigate the role of CD40 in microglial cell activation during experimental autoimmune encephalomyelitis (EAE), we used bone marrow chimera mice that allowed us to distinguish microglial cells from peripheral macrophages and render microglial cells deficient in CD40. We found that the first step of microglial cell activation was CD40-independent and occurred during EAE onset. The first step of activation consisted of microglial cell proliferation and up-regulation of the activation markers MHC class II, CD40, and CD86. At the peak of disease, microglial cells underwent a second step of activation, which was characterized by a further enhancement in activation marker expression along with a reduction in proliferation. The second step of microglial cell activation was CD40-dependent and the failure of CD40-deficient microglial cells to achieve a full level of activation during EAE was correlated with reduced expansion of encephalitogenic T cells and leukocyte infiltration in the CNS, and amelioration of clinical symptoms. Thus, our findings demonstrate that CD40 expression on microglial cells is necessary to complete their activation process during EAE, which is important for disease progression.  相似文献   
142.
N-linked glycosylation is recognized as an important post-translational modification across all three domains of life. However, the understanding of the genetic pathways for the assembly and attachment of N-linked glycans in eukaryotic and bacterial systems far outweighs the knowledge of comparable processes in Archaea. The recent characterization of a novel trisaccharide [beta-ManpNAcA6Thr-(1-4)-beta-GlcpNAc3NAcA-(1-3)-beta-GlcpNAc]N-linked to asparagine residues in Methanococcus voltae flagellin and S-layer proteins affords new opportunities to investigate N-linked glycosylation pathways in Archaea. In this contribution, the insertional inactivation of several candidate genes within the M. voltae genome and their resulting effects on flagellin and S-layer glycosylation are reported. Two of the candidate genes were shown to have effects on flagellin and S-layer protein molecular mass and N-linked glycan structure. Further examination revealed inactivation of either of these two genes also had effects on flagella assembly. These genes, designated agl (archaeal glycosylation) genes, include a glycosyl transferase (aglA) involved in the attachment of the terminal sugar to the glycan and an STT3 oligosaccharyl transferase homologue (aglB) involved in the transfer of the complete glycan to the flagellin and S-layer proteins. These findings document the first experimental evidence for genes involved in any glycosylation process within the domain Archaea.  相似文献   
143.
4,5-Dihydroxy-2,3-pentanedione (DPD), a product of the LuxS enzyme in the catabolism of S-ribosylhomocysteine, spontaneously cyclizes to form autoinducer 2 (AI-2). AI-2 is proposed to be a universal signal molecule mediating interspecies communication among bacteria. We show that mutualistic and abundant biofilm growth in flowing saliva of two human oral commensal bacteria, Actinomyces naeslundii T14V and Streptococcus oralis 34, is dependent upon production of AI-2 by S. oralis 34. A luxS mutant of S. oralis 34 was constructed which did not produce AI-2. Unlike wild-type dual-species biofilms, A. naeslundii T14V and an S. oralis 34 luxS mutant did not exhibit mutualism and generated only sparse biofilms which contained a 10-fold lower biomass of each species. Restoration of AI-2 levels by genetic or chemical (synthetic AI-2 in the form of DPD) complementation re-established the mutualistic growth and high biomass characteristic for the wild-type dual-species biofilm. Furthermore, an optimal concentration of DPD was determined, above and below which biofilm formation was suppressed. The optimal concentration was 100-fold lower than the detection limit of the currently accepted AI-2 assay. Thus, AI-2 acts as an interspecies signal and its concentration is critical for mutualism between two species of oral bacteria grown under conditions that are representative of the human oral cavity.  相似文献   
144.
Biosynthetic diversity in plant triterpene cyclization   总被引:5,自引:0,他引:5  
Plants produce a wealth of terpenoids, many of which have been the tools of healers and chiefs for millennia. Recent research has led to the identification and characterization of many genes that are responsible for the biosynthesis of triterpenoids. Cyclases that generate sterol precursors can be recognized with some confidence on the basis of sequence; several catalytically important residues are now known, and the product profiles of sterol-generating cyclases typically reflect their phylogenetic position. By contrast, the phylogenetic relationships of cyclases that generate nonsteroidal triterpene alcohols do not consistently reflect their catalytic properties and might indicate recent and rapid catalytic evolution.  相似文献   
145.
Our in vitro studies support a functional link between the induction of cathepsin B gene expression and the catabolic restructuring associated with myotube formation during myogenesis in vivo. We have tested two predictions that are basic to this hypothesis: (1) that active cathepsin B is localized to plasma membrane caveolae of fusing myoblasts; and (2) that active cathepsin B is secreted from fusing myoblasts at physiological pH. During differentiation, L6 rat myoblasts demonstrated a fusion-related increase in activity associated with the 25/26-kDa, fully processed, active form of cathepsin B. Immunocytochemical studies demonstrated a redistribution of lysosomal cathepsin B protein toward the membrane of fusing myoblasts, and a colocalization of cathepsin B with caveolin-3, the muscle-specific structural protein of membrane caveolae. Sucrose density fractionation and Western blot analysis demonstrated that an active form of cathepsin B localizes to caveolar fractions along with caveolin-3, annexin-VII, beta-dystroglycan and dystrophin. Finally, 'real-time' activity assays and Western blot analysis demonstrated that active cathepsin B is secreted from fusing myoblasts at physiological pH. Collectively, these studies support an association of active cathepsin B with plasma membrane caveolae and the secretion of active cathepsin B from differentiating myoblasts during myoblast fusion.  相似文献   
146.
147.
Optically stimulated luminescence (OSL) measurements are reported for both single aliquots (of two different sizes) and single grains of quartz from deposits within Blombos Cave. Ages have been obtained for six sediments from the Middle Stone Age (MSA) occupation levels and for two sterile sands, one underlying the archaeological sediment and one overlying the Later Stone Age occupation levels. The ages for the archaeological sediments were obtained from single-grain measurements that enabled unrepresentative grains to be rejected. The MSA occupation levels have ages that, within error limits, are in stratigraphic order and fall between the OSL age for the oldest dune sand (143.2+/-5.5 ka) and a previously published OSL age for the sterile sand ( approximately 70 ka) that separates the Middle and Later Stone Age deposits. The earliest MSA archaeological phase, M3, from where fragments of ochre were found as well as human teeth, is dated to 98.9+/-4.5 ka, coinciding with the sea-level high of oxygen isotope substage 5c. The cave then appears to be unoccupied until oxygen isotope substage 5a on the basis of four OSL ages for archaeological phase M2, ranging from 84.6+/-5.8 to 76.8+/-3.1 ka; these levels contained large hearths and bone tools. An age of 72.7+/-3.1 ka was obtained for the final MSA archaeological phase, M1, from which deliberately engraved ochre and shell beads were recovered along with bifacial stone points. We conclude that the periods of occupation were determined by changes in sea level, with abundant sources of seafood available in times of high sea level and with the cave being closed by the accumulation of large dunes during periods of low sea level, such as during oxygen isotope stages 4 and 6.  相似文献   
148.
Bacterially speaking   总被引:26,自引:0,他引:26  
Bassler BL  Losick R 《Cell》2006,125(2):237-246
Bacteria use a variety of means to communicate with one another and with their eukaryotic hosts. In some cases, social interactions allow bacteria to synchronize the behavior of all of the members of the group and thereby act like multicellular organisms. By contrast, some bacterial social engagements promote individuality among members within the group and thereby foster diversity. Here we explore the molecular mechanisms underpinning some recently discovered bacterial communication systems. These include long- and short-range chemical signaling channels; one-way, two-way, and multi-way communication; contact-mediated and contact-inhibited signaling; and the use and spread of misinformation or, more dramatically, even deadly information.  相似文献   
149.
In light of the recently described human schistosome Schistosoma guineensis and recent phylogenetic studies of the genus Schistosoma, a revision of the interrelationships of the members of this genus is needed. This paper adds to previous phylogenetic studies on the family Schistosomatidae and offers the most up to date and robust phylogeny of the group based on complete small and large nuclear subunit rRNA genes and partial mitochondrial cox1, incorporating most of the 21 species of Schistosoma. Our findings show that the group retains the same topology as that resolved in previous studies except Schistosoma margrebowiei was resolved as the sister taxon to all others in the Schistosoma haematobium species group and S. guineensis was placed as sister species to both Schistosoma bovis and Schistosoma curassoni. The S. haematobium species group contains eight species of which many are of significant medical and veterinary importance. Additionally, many of these species have been shown to hybridise both in the wild and experimentally, making the correct identification and recognition of species very important. A pairwise comparison of cox1 among Schistosoma species suggests this gene alone would fail as a reliable barcode for species identification. Phylogenetic results clearly treat Schistosoma intercalatum and S. guineensis as separate taxa with each more closely related evolutionarily to S. haematobium than to each other. The study also highlights the problems associated with wrongly attributed sequences on public databases such as GenBank.  相似文献   
150.
It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号