首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1784篇
  免费   186篇
  1970篇
  2023年   7篇
  2022年   18篇
  2021年   25篇
  2020年   16篇
  2019年   20篇
  2018年   44篇
  2017年   31篇
  2016年   49篇
  2015年   86篇
  2014年   95篇
  2013年   109篇
  2012年   141篇
  2011年   111篇
  2010年   85篇
  2009年   60篇
  2008年   117篇
  2007年   104篇
  2006年   75篇
  2005年   84篇
  2004年   95篇
  2003年   71篇
  2002年   74篇
  2001年   36篇
  2000年   51篇
  1999年   35篇
  1998年   16篇
  1997年   22篇
  1996年   9篇
  1995年   9篇
  1993年   12篇
  1992年   18篇
  1991年   22篇
  1990年   12篇
  1989年   19篇
  1988年   14篇
  1987年   8篇
  1986年   8篇
  1985年   10篇
  1984年   12篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   12篇
  1979年   8篇
  1977年   9篇
  1974年   10篇
  1973年   8篇
  1972年   6篇
  1970年   7篇
  1967年   6篇
排序方式: 共有1970条查询结果,搜索用时 0 毫秒
91.
Cho H  Kim KM  Han S  Choe J  Park SG  Choi SS  Kim YK 《Molecular cell》2012,46(4):495-506
The double-stranded RNA binding protein Staufen1 (Stau1) is involved in diverse gene expression pathways. For Stau1-mediated mRNA decay (SMD) in mammals, Stau1 binds to the 3' untranslated region of target mRNA and recruits Upf1 to elicit rapid mRNA degradation. However, the events downstream of Upf1 recruitment and the biological importance of SMD remain unclear. Here we show that SMD involves PNRC2, decapping activity, and 5'-to-3' exonucleolytic activity. In particular, Upf1 serves as an adaptor protein for the association of PNRC2 and Stau1. During adipogenesis, Stau1 and PNRC2 increase in abundance, Upf1 becomes hyperphosphorylated, and consequently SMD efficiency is enhanced. Intriguingly, downregulation of SMD components attenuates adipogenesis in a way that is rescued by downregulation of an antiadipogenic factor, Krüppel-like factor 2 (KLF2), the mRNA of which is identified as a substrate of SMD. Our data thus identify a biological role for SMD in adipogenesis.  相似文献   
92.
93.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-1beta, and TNF-alpha, in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of reepithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating reepithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.  相似文献   
94.
One of the most widely accepted ideas related to the evolutionary rates of proteins is that functionally important residues or regions evolve slower than other regions, a reasonable outcome of which should be a slower evolutionary rate of the proteins with a higher density of functionally important sites. Oddly, the role of functional importance, mainly measured by essentiality, in determining evolutionary rate has been challenged in recent studies. Several variables other than protein essentiality, such as expression level, gene compactness, protein–protein interactions, etc., have been suggested to affect protein evolutionary rate. In the present review, we try to refine the concept of functional importance of a gene, and consider three factors—functional importance, expression level, and gene compactness, as independent determinants of evolutionary rate of a protein, based not only on their known correlation with evolutionary rate but also on a reasonable mechanistic model. We suggest a framework based on these mechanistic models to correctly interpret the correlations between evolutionary rates and the various variables as well as the interrelationships among the variables.  相似文献   
95.
The operon of the anabolic pyruvate oxidoreductase (POR) of Methanococcus maripaludis encodes two genes (porEF) whose functions are unknown. Because these genes possess sequence similarity to polyferredoxins, they may be electron carriers to the POR. To elucidate whether the methanococcal POR requires PorEF for activity, a deletion mutant, strain JJ150, lacking porEF was constructed. Compared to the wild-type strain JJ1, the mutant grew more slowly in minimal medium and minimal plus acetate medium, and pyruvate-dependent methanogenesis was inhibited. In contrast, the methyl-viologen-dependent pyruvate-oxidation activity of POR, carbon monoxide dehydrogenase, and hydrogenase activities of the mutant were similar to those of the wild-type. Upon genetic complementation of the mutant with porEF in the methanococcal shuttle vector pMEV2+porEF, growth in minimal medium and pyruvate-dependent methanogenesis were restored to wild-type levels. Complementation with porE alone restored methanogenesis from pyruvate but not growth in minimal medium. Complementation with porF alone partially restored growth but not methanogenesis from pyruvate. Although the specific roles of porE and porF have not been determined, these results suggest that PorEF play important roles in the anabolic POR in vivo even though they are not required for the dye-dependent activity.Abbreviations CODH/ACS Carbon monoxide dehydrogenase/acetyl-CoA synthase - POR Pyruvate oxidoreductase  相似文献   
96.
We examined the species groups relationships of the freshwater snail genus Austropeplea using mitochondrial, nuclear and morphological markers in addition to traditional methods of shell shape analysis. Based primarily on the results of a combined molecular and morphological analysis, samples of the nominal species A. tomentosa form distinct lineages. The New Zealand populations of A. tomentosa are a very distinct lineage from any of the Australian populations attributed to A. tomentosa. Furthermore, within the Australian group, three lineages, south Australia, Tasmania and eastern Australia, appear to have undergone recent and/or rapid speciation events. Samples assigned to A. lessoni were resolved as two distinct lineages, representing the eastern and northern Australian populations. Kutikina hispida was resolved within the Australian A. tomentosa clade. Molecular results for A. viridis suggests that it is also composed of at least two distinct lineages that could be treated as species. Incongruence observed between the single mitochondrial, nuclear and morphological topologies highlight the importance of using a number of different datasets in the delimitation of species-group taxa.  相似文献   
97.
The profiles of hypoxanthine guanine phosphoribosyl transferase (HGPRT) and adenine phosphoribosyl transferase (APRT) activities were examined in normally fertilized human embryos developing at the normal rate in vitro between the 2-4-cell stage on Day 2 and the blastocyst stage on Day 6 after insemination. The activities of both enzymes were assayed simultaneously in extracts of single embryos by measuring the rate of production of the reaction products, inosine monophosphate (IMP) and adenine monophosphate (AMP), separated by high-performance liquid chromatography (HPLC). The activity profiles of the two enzymes over this period showed marked differences. The activity of HGPRT, coded by the X chromosome, increased between Days 2 and 4 (P less than 0.01) but declined sharply by Day 6 (P less than 0.001), whereas autosome-coded APRT activity remained low between Days 2 and 5, but increased on Day 6 (P less than 0.05). The profile of HGPRT activity may reflect a combination of decreasing levels of maternal enzyme inherited from the oocyte and the initiation of embryonic gene expression followed by X inactivation at the blastocyst stage on Day 6.  相似文献   
98.
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.  相似文献   
99.
100.
A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号