首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   797篇
  免费   60篇
  857篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   15篇
  2015年   29篇
  2014年   31篇
  2013年   39篇
  2012年   60篇
  2011年   53篇
  2010年   37篇
  2009年   35篇
  2008年   54篇
  2007年   50篇
  2006年   54篇
  2005年   57篇
  2004年   47篇
  2003年   40篇
  2002年   40篇
  2001年   6篇
  2000年   9篇
  1999年   12篇
  1998年   12篇
  1997年   10篇
  1996年   13篇
  1995年   4篇
  1994年   11篇
  1993年   10篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   7篇
  1979年   2篇
  1978年   8篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1943年   1篇
排序方式: 共有857条查询结果,搜索用时 15 毫秒
81.
82.
Summary The malE and malK genes from Salmonella typhimurium, and the MalEFG operon and a portion of malK from Enterobacter aerogenes were cloned and sequenced. Plasmid-borne malE genes from both species and the malF and malG genes from E. aerogenes were expressed normally in Escherichia coli, and their products function in maltose transport. This shows that the malB products from the three species are interchangeable, at least in the combinations tested. The general genetic organization of the malB region is conserved. Potential binding sites and distances between them are highly conserved in the regulatory intervals. An unexpected conserved region was detected, which we call the U box, and which could be another target for a regulatory protein. This hypothesis is supported by the presence of the U box in the regulatory, region of the pulA-malX operon in Klebsiella pneumoniae. The intergenic region between malE and malF from S. typhimurium and E. aerogenes, contains inverted repeats similar to the palindromic units (PU or REP) found at the same location in E. coli. The predicted amino acid sequence of the encoded proteins showed 90% or more identity in every pairwise comparison of species.  相似文献   
83.
Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques—dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR—underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.  相似文献   
84.
85.
Mammals regulate their brain tissue PO2 tightly, and only small changes in brain PO2 are required to elicit compensatory ventilation. However, unlike the flow-through cardiovascular system of vertebrates, insect tissues exchange gases through blind-ended tracheoles, which may involve a more prominent role for diffusive gas exchange. We tested the effect of progressive hypoxia on ventilation and the PO2 of the metathoracic ganglion (neural site of control of ventilation) using microelectrodes in the American locust, Schistocerca americana. In normal air (21 kPa), PO2 of the metathoracic ganglion was 12 kPa. The PO2 of the ganglion dropped as air PO2 dropped, with ventilatory responses occurring when ganglion PO2 reached 3 kPa. Unlike vertebrates, insects tolerate relatively high resting tissue PO2 levels and allow tissue PO2 to drop during hypoxia, activity and discontinuous gas exchange before activating convective or spiracular gas exchange. Tracheated animals, and possibly pancrustaceans in general, seem likely to generally experience wide spatial and temporal variation in tissue PO2 compared with vertebrates, with important implications for physiological function and the evolution of oxygen-using proteins.  相似文献   
86.
87.
Is loss of function of the prion protein the cause of prion disorders?   总被引:4,自引:0,他引:4  
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases that involve misfolding of the prion protein. Recent studies have provided evidence that normal prion protein might have a physiological function in neuroprotective signaling, suggesting that loss of prion protein activity might contribute to the pathogenesis of prion disease. However, studies using knockout animals do not support the loss-of-function hypothesis and argue that prion neurodegeneration might be associated with a gain of a toxic activity by the misfolded prion protein. Thus, the mechanism of neurodegeneration in spongiform encephalopathies remains enigmatic.  相似文献   
88.
Because of the broad versatility of lipases as biocatalysts, interest has for some years been focused on the improvement of the economy of processes using these enzymes, especially by appropriate immobilisation. In this study, a method was developed to emulsify aqueous solutions of lipase A of Candida antarctica (CALA) and lipase of Thermomyces lanuginosa (TLL) in silicone elastomers yielding elastic beads. The persistent water-organic interface created by this static emulsion enabled an improved performance of the immobilised lipases due to the well known fact that from a kinetic point of view these enzymes show a higher efficiency in biphasic than in monophasic systems. The entrapped lipases catalysed the esterification of octanol and caprylic acid in hexane with an activity that, related to the free enzyme, was enhanced about 31-fold for CALA and 250-fold for TLL. Comparison to the activity of the same enzymes in sol–gels revealed that for CALA immobilisation in static emulsion was the only method yielding active biocatalysts, whereas activation of TLL was in the same range in static emulsion and sol–gels. However, apparent activity of TLL in static emulsion was considerably higher than in sol–gels due to the feasible high enzyme loading. The results indicate that immobilising lipases as static emulsion is a technique suitable for biotechnological application. Moreover, a transfer to enzymes of other classes seems possible.  相似文献   
89.
It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer''s patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood.  相似文献   
90.
The peroxidase cytochemistry and the ultrastructural characteristics of resident macrophages in fetal rat liver have been investigated. Livers of 10-, 11-, 14-, 17-, and 20-day-old fetuses were fixed by immersion or perfusion, incubated for peroxidase, and processed for transmission electron microscopy. Some 17- and 20-day-old fetuses were injected prior to sacrifice with carbon or 0.8-μm latex particles through the umbilical vein. Some livers were additionally processed for scanning electron microscopy (SEM). The endogenous peroxidase was present in the nuclear envelope (NE) and endoplasmic reticulum (ER) of fetal macrophages with a negative reaction in the Golgi apparatus, a distribution pattern identical to that in Kupffer cells of adult rat liver. Such peroxidase-positive cells avidly took up the injected latex and carbon particles and were the only cell type in fetal liver involved in erythrophagocytosis. Furthermore, they were associated with erythropoietic elements, forming close contacts with such cells, especially normoblasts. The peroxidase pattern in leukopoietic cells differed at all stages of maturation from that in macrophages. By SEM the macrophages exhibited ruffles and lamellopodia on their surfaces and protruded often into the lumen of fetal sinusoids. Macrophages in fetal liver underwent mitotic divisions. The macrophages were first seen on gestation day 11, whereas the first mature monocytes were found on gestation day 17. These observations suggest that resident macrophages in fetal rat liver form a self-replicating cell line independent of the monocytopoietic series, although they may both arise from a common precursor cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号