首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20874篇
  免费   2079篇
  国内免费   18篇
  22971篇
  2022年   203篇
  2021年   425篇
  2020年   231篇
  2019年   297篇
  2018年   382篇
  2017年   307篇
  2016年   449篇
  2015年   872篇
  2014年   851篇
  2013年   1177篇
  2012年   1492篇
  2011年   1438篇
  2010年   906篇
  2009年   822篇
  2008年   1154篇
  2007年   1180篇
  2006年   1090篇
  2005年   1138篇
  2004年   1073篇
  2003年   997篇
  2002年   1007篇
  2001年   214篇
  2000年   153篇
  1999年   252篇
  1998年   269篇
  1997年   178篇
  1996年   164篇
  1995年   156篇
  1994年   147篇
  1993年   169篇
  1992年   154篇
  1991年   143篇
  1990年   132篇
  1989年   159篇
  1988年   152篇
  1987年   130篇
  1986年   122篇
  1985年   144篇
  1984年   142篇
  1983年   138篇
  1982年   185篇
  1981年   191篇
  1980年   142篇
  1979年   115篇
  1978年   136篇
  1977年   104篇
  1976年   105篇
  1975年   90篇
  1974年   97篇
  1973年   84篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
162.
The rate and plane of cell division and anisotropic cell growth are critical for plant development and are regulated by diverse mechanisms involving several hormone signaling pathways. Little is known about peptide signaling in plant growth; however, Arabidopsis thaliana POLARIS (PLS), encoding a 36-amino acid peptide, is required for correct root growth and vascular development. Mutational analysis implicates a role for the peptide in hormone responses, but the basis of PLS action is obscure. Using the Arabidopsis root as a model to study PLS action in plant development, we discovered a link between PLS, ethylene signaling, auxin homeostasis, and microtubule cytoskeleton dynamics. Mutation of PLS results in an enhanced ethylene-response phenotype, defective auxin transport and homeostasis, and altered microtubule sensitivity to inhibitors. These defects, along with the short-root phenotype, are suppressed by genetic and pharmacological inhibition of ethylene action. PLS expression is repressed by ethylene and induced by auxin. Our results suggest a mechanism whereby PLS negatively regulates ethylene responses to modulate cell division and expansion via downstream effects on microtubule cytoskeleton dynamics and auxin signaling, thereby influencing root growth and lateral root development. This mechanism involves a regulatory loop of auxin-ethylene interactions.  相似文献   
163.
The ribbon-like macronucleus of Euplotes eurystomus pinches in half amitotically at each cell division. Several hours before the actual division two lightly staining duplication bands (reorganization bands) appear at the ends of the nucleus and approach each other slowly, finally meeting near the middle. Distal to the bands, that is, in regions through which the bands have already passed, the concentration of DNA (Feulgen) and "histone" (alkaline fast green) is greater than in the central zone. These facts suggest the hypothesis that DNA-histone synthesis takes place in a sequential fashion starting at the tips of the nucleus and proceeding to the middle. That this hypothesis is correct is shown by autoradiographic and photometric observations. Tritium-labelled thymidine is incorporated only in a limited region immediately distal to the bands. The average amount of Feulgen dye bound by the nucleus rises as the duplication bands approach each other, and is double the presynthesis value by the time the bands meet. A similar rise in the alkaline fast green dye is seen in duplicating nuclei, although no completely post-synthesis values were obtained in this study. The quantitative data are consistent with the assumption that the macronucleus contains a number of DNA-histone "units," presumably chromosomes, each of which duplicates once and only once.  相似文献   
164.
In an attempt to improve the bread-making quality within hexaploid wheat by elaborating novel high-molecular weight glutenin subunits (HMW-GS) combinations useful in wheat-breeding programmes, a 1A chromosome fragment carrying the Glu-A1 locus encoding the subunit Ax2*, was translocated to the long arm of chromosome 1D. The partially isohomoeoallelic line, designated RR239, had a meiotic behaviour as regular as cv. Courtot. It was characterised using genomic in situ hybridization and microsatellite markers as well as biochemical and proteomic approaches. The translocated 1D chromosome had an interstitial 1AL segment representing in average 30% of the recombinant arm length that was confirmed by molecular analysis. The genetic length of the removed segment in chromosome 1DL was estimated to be at least 51 cM, and that of the interstitial 1AL translocation to be at least 33 cM. Proteome analysis performed on total endosperm proteins revealed variation in amounts, 8 spots and 1 spot being up- and downregulated, respectively. Quantitative variations in HMW-GS were observed for the Glu-A1 (Ax2*) and Glu-B1 (Bx7 + By8) loci in response to duplication of the Glu-A1 locus.  相似文献   
165.
Uridine phosphorylase activity has been used to detect mycoplasmas in cell cultures by measuring formation of14C-uracil from14C-uridine. In this report we show that all species ofMycoplasma, Acholeplasma, andUreaplasma tested exhibited uridine phorphorylase activity. Among the genusSpiroplasma, serogroups I-1, I-3, I-5, I-7, I-8, IV, XIII, and XIV lacked uridine phosphorylase activity.Present address: Ciba-Geigy, Basel, Switzerland.  相似文献   
166.
167.
168.
169.
The New Delhi Metallo-β-lactamase (NDM-1) gene makes multiple pathogenic microorganisms resistant to all known β-lactam antibiotics. The rapid emergence of NDM-1 has been linked to mobile plasmids that move between different strains resulting in world-wide dissemination. Biochemical studies revealed that NDM-1 is capable of efficiently hydrolyzing a wide range of β-lactams, including many carbapenems considered as "last resort" antibiotics. The crystal structures of metal-free apo- and monozinc forms of NDM-1 presented here revealed an enlarged and flexible active site of class B1 metallo-β-lactamase. This site is capable of accommodating many β-lactam substrates by having many of the catalytic residues on flexible loops, which explains the observed extended spectrum activity of this zinc dependent β-lactamase. Indeed, five loops contribute "keg" residues in the active site including side chains involved in metal binding. Loop 1 in particular, shows conformational flexibility, apparently related to the acceptance and positioning of substrates for cleavage by a zinc-activated water molecule.  相似文献   
170.
The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号