首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   49篇
  2022年   4篇
  2021年   14篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   7篇
  2016年   9篇
  2015年   12篇
  2014年   15篇
  2013年   16篇
  2012年   19篇
  2011年   17篇
  2010年   13篇
  2009年   11篇
  2008年   15篇
  2007年   7篇
  2006年   13篇
  2005年   7篇
  2004年   14篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1992年   8篇
  1991年   6篇
  1990年   10篇
  1989年   2篇
  1988年   12篇
  1987年   8篇
  1986年   10篇
  1985年   16篇
  1984年   13篇
  1983年   5篇
  1982年   12篇
  1981年   10篇
  1980年   9篇
  1979年   15篇
  1978年   12篇
  1977年   7篇
  1975年   2篇
  1974年   5篇
  1972年   3篇
  1971年   4篇
  1970年   2篇
  1969年   6篇
排序方式: 共有432条查询结果,搜索用时 109 毫秒
71.
72.
The effect of calcium ions on the peroxidation of ox-brain phospholipid liposomes in different free-radical catalysing systems has been assessed. Using thiobarbituric acid-reactivity (TBA) as a measure of lipid peroxidation, calcium ions both inhibited and enhanced peroxidation in the different systems.Changing the composition of the ox-brain phospholipid liposome with synthetic non TBA-reactive phosphatidylcholine, significantly altered its susceptibility to peroxidation both in the presence and absence of calcium ions.The results are discussed with reference to the possibility that calcium ions induce conformational changes in membrane phospholipids. Susceptibility to peroxidation is then influenced by a complex interrelationship between the qualitative lipid composition of the membrane, the pro-oxidant catalyst and the presence of calcium or other active ions.  相似文献   
73.
Active aspartic proteinase is isolated from Brassica napus seeds and the peptide sequence is used to generate primers for PCR. We present here cDNA and genomic clones for aspartic proteinases from the closely related Brassicaceae Arabidopsis thaliana and Brassica napus. The Arabidopsis cDNA represents a single gene, while Brassica has at least 4 genes. Like other plant aspartic proteases, the two Brassicaceae enzymes contain an extra protein domain of about 100 amino acids relative to the mammalian forms. The intron/exon arrangement in the Brassica genomic clone is significantly different from that in mammalian genes. As the proteinase is isolated from seeds, the same tissue where 2S albumins are processed, this implies expression of one of the aspartic proteinase genes there.  相似文献   
74.
The copper-containing plasma protein caeruloplasmin (Cp) has been shown to possess several oxidase activities, but with the exception of its ferrous ion oxidising (ferroxidase) activity which so far appear to be of minor biological relevance. Recently, Kim and colleagues (Kim et al. (1998) FEBS Lett. 431, pp. 473-475) observed that Cp can catalytically remove hydrogen peroxide in the presence of thiols. Here, we show that Cp can remove both hydrogen peroxide and lipid hydroperoxides at physiologically relevant concentrations of reduced glutathione known to be present in lung and lung lining fluid. The glutathione peroxidase-like activity of Cp together with its ferroxidase activity would completely remove the primary reactants required for both Fenton chemistry and lipid peroxidation.  相似文献   
75.
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.  相似文献   
76.
77.
78.
During invasion of their plant hosts, species of the oomycete genus Phytophthora secrete glucanase inhibitor proteins (GIPs) into the plant apoplast, which bind and inhibit the activity of plant extracellular endo-beta-1,3-glucanases (EGases). GIPs show structural homology to the chymotrypsin class of serine proteases (SP) but lack proteolytic activity due to the absence of an intact catalytic triad and, thus, belong to a broader class of proteins called serine protease homologs (SPH). To study the evolutionary relationship between GIPs and functional SP, database searches were used to identify 48 GIP homologs in the P. sojae, P. ramorum, and P. infestans genomes, composing GIPs, SPH, and potentially functional SP. Analyses of P. infestans-inoculated tomato leaves showed that P. infestans GIPs and tomato EGases are present in the apoplast and form stable complexes in planta. Studies of the temporal expression of a four-membered GIP family from P. infestans (PiGIP1 to PiGIP4) further revealed that the genes show distinctly different patterns during an infection timecourse. Codon evolution analyses of GIP homologs identified several positively selected peptide sites and structural modeling revealed them to be in close proximity to rapidly evolving EGase residues, suggesting that the interaction between GIPs and EGases has the hallmarks of a coevolving molecular arms race.  相似文献   
79.
The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of β-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase ε, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase α is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase ε chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase α.  相似文献   
80.
Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号