首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13640篇
  免费   1445篇
  国内免费   5篇
  2021年   173篇
  2020年   110篇
  2019年   121篇
  2018年   136篇
  2017年   143篇
  2016年   225篇
  2015年   358篇
  2014年   462篇
  2013年   603篇
  2012年   643篇
  2011年   636篇
  2010年   429篇
  2009年   335篇
  2008年   508篇
  2007年   576篇
  2006年   504篇
  2005年   513篇
  2004年   489篇
  2003年   430篇
  2002年   473篇
  2001年   413篇
  2000年   400篇
  1999年   344篇
  1998年   178篇
  1997年   157篇
  1996年   152篇
  1995年   128篇
  1994年   148篇
  1993年   130篇
  1992年   241篇
  1991年   241篇
  1990年   244篇
  1989年   222篇
  1988年   226篇
  1987年   244篇
  1986年   184篇
  1985年   208篇
  1984年   186篇
  1983年   180篇
  1982年   146篇
  1981年   133篇
  1980年   127篇
  1979年   179篇
  1978年   171篇
  1977年   129篇
  1976年   130篇
  1975年   138篇
  1974年   146篇
  1973年   124篇
  1972年   149篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
851.
Fgf8 signalling is known to play an important role during patterning of the first pharyngeal arch, setting up the oral region of the head and then defining the rostral and proximal domains of the arch. The mechanisms that regulate the restricted expression of Fgf8 in the ectoderm of the developing first arch, however, are not well understood. It has become apparent that pharyngeal endoderm plays an important role in regulating craniofacial morphogenesis. Endoderm ablation in the developing chick embryo results in a loss of Fgf8 expression in presumptive first pharyngeal arch ectoderm. Shh is locally expressed in pharyngeal endoderm, adjacent to the Fgf8-expressing ectoderm, and is thus a candidate signal regulating ectodermal Fgf8 expression. We show that in cultured explants of presumptive first pharyngeal arch, loss of Shh signalling results in loss of Fgf8 expression, both at early stages before formation of the first arch, and during arch formation. Moreover, following removal of the endoderm, Shh protein can replace this tissue and restore Fgf8 expression. Overexpression of Shh in the non-oral ectoderm leads to an expansion of Fgf8, affecting the rostral-caudal axis of the developing first arch, and resulting in the formation of ectopic cartilage. Shh from the pharyngeal endoderm thus regulates Fgf8 in the ectoderm and the role of the endoderm in pharyngeal arch patterning may thus be indirectly mediated by the ectoderm.  相似文献   
852.
The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow.  相似文献   
853.
Hadfield JD  Wilson AJ 《Genetics》2007,177(1):667-668
Bijma et al. (2007a,b) presented a quantitative genetic theory of multilevel selection and showed how to estimate the relevant parameters using standard restricted maximum-likelihood (REML) methodology. Extending their results we develop a wider class of models that provide a more realistic framework for capturing the effects of interacting individuals. These models also make use of standard REML techniques and include the original model as a special case.  相似文献   
854.
Peptide O-xylosyltransferase (EC 2.4.2.26) is the first enzyme required for the generation of chondroitin and heparan sulfate glycosaminoglycan chains of proteoglycans. Cloning of cDNAs has previously shown that, whereas invertebrates generally have a single xylosyltransferase gene, vertebrate genomes encode two similar proteins, xylosyltransferase I and II (XT-I and XT-II). To date, enzymatic activity has only been demonstrated for the human XT-I, Caenorhabditis SQV-6, and Drosophila OXT isoforms. In the present study, we demonstrate that a soluble form of human XT-II expressed in the xylosyltransferase-deficient pgsA-745 (S745) Chinese hamster ovary cell line is indeed capable of catalyzing the transfer of xylose to a variety of peptide substrates; its enzyme activity was also proven using a Pichia-expressed form of XT-II. Its pH, temperature, and cation dependences are similar to those of XT-I expressed in either mammalian cells or yeast. Our data suggest that XT-I and XT-II are, at least in vitro, functionally identical.  相似文献   
855.
The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme.  相似文献   
856.
Recent studies confirm that intracellular cAMP concentrations are nonuniform and that localized subcellular cAMP hydrolysis by cyclic nucleotide phosphodiesterases (PDEs) is important in maintaining these cAMP compartments. Human phosphodiesterase 3B (HSPDE3B), a member of the PDE3 family of PDEs, represents the dominant particulate cAMP-PDE activity in many cell types, including adipocytes and cells of hematopoietic lineage. Although several previous reports have shown that phosphorylation of HSPDE3B by either protein kinase A (PKA) or protein kinase B (PKB) activates this enzyme, the mechanisms that allow cells to distinguish these two activated forms of HSPDE3B are unknown. Here we report that PKA phosphorylates HSPDE3B at several distinct sites (Ser-73, Ser-296, and Ser-318), and we show that phosphorylation of HSPDE3B at Ser-318 activates this PDE and stimulates its interaction with 14-3-3 proteins. In contrast, although PKB-catalyzed phosphorylation of HSPDE3B activates this enzyme, it does not promote 14-3-3 protein binding. Interestingly, we report that the PKA-phosphorylated, 14-3-3 protein-bound, form of HSPDE3B is protected from phosphatase-dependent dephosphorylation and inactivation. In contrast, PKA-phosphorylated HSPDE3B that is not bound to 14-3-3 proteins is readily dephosphorylated and inactivated. Our data are presented in the context that a selective interaction between PKA-activated HSPDE3B and 14-3-3 proteins represents a mechanism by which cells can protect this enzyme from deactivation. Moreover, we propose that this mechanism may allow cells to distinguish between PKA- and PKB-activated HSPDE3B.  相似文献   
857.
RNase-L mediates critical cellular functions including antiviral, pro-apoptotic, and tumor suppressive activities; accordingly, its expression must be tightly regulated. Little is known about the control of RNASEL expression; therefore, we examined the potential regulatory role of a conserved 3'-untranslated region (3'-UTR) in its mRNA. The 3'-UTR mediated a potent decrease in the stability of RNase-L mRNA, and of a chimeric beta-globin-3'-UTR reporter mRNA. AU-rich elements (AREs) are cis-acting regulatory regions that modulate mRNA stability. Eight AREs were identified in the RNase-L 3'-UTR, and deletion analysis identified positive and negative regulatory regions associated with distinct AREs. In particular, AREs 7 and 8 served a strong positive regulatory function. HuR is an ARE-binding protein that stabilizes ARE-containing mRNAs, and a predicted HuR binding site was identified in the region comprising AREs 7 and 8. Co-transfection of HuR and RNase-L enhanced RNase-L expression and mRNA stability in a manner that was dependent on this 3'-UTR region. Immunoprecipitation demonstrated that RNase-L mRNA associates with a HuR containing complex in intact cells. Activation of endogenous HuR by cell stress, or during myoblast differentiation, increased RNase-L expression, suggesting that RNase-L mRNA is a physiologic target for HuR. HuR-dependent regulation of RNase-L enhanced its antiviral activity demonstrating the functional significance of this regulation. These findings identify a novel mechanism of RNase-L regulation mediated by its 3'-UTR.  相似文献   
858.
Protein L7/L12 of the bacterial ribosome plays an important role in activating the GTP hydrolytic activity of elongation factor G (EF-G), which promotes ribosomal translocation during protein synthesis. Previously, we cross-linked L7/L12 from two residues (209 and 231) flanking alpha-helix AG' in the G' subdomain of Escherichia coli EF-G. Here we report kinetic studies on the functional effects of mutating three neighboring glutamic acid residues (224, 228, and 231) to lysine, either singly or in combination. Two single mutations (E224K and E228K), both within helix AG', caused large defects in GTP hydrolysis and smaller defects in ribosomal translocation. Removal of L7/L12 from the ribosome strongly reduced the activities of wild type EF-G but had no effect on the activities of the E224K and E228K mutants. Together, these results provide evidence for functionally important interactions between helix AG' of EF-G and L7/L12 of the ribosome.  相似文献   
859.
860.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号