首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   24篇
  387篇
  2022年   5篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2016年   5篇
  2015年   8篇
  2014年   13篇
  2013年   15篇
  2012年   21篇
  2011年   30篇
  2010年   21篇
  2009年   17篇
  2008年   17篇
  2007年   28篇
  2006年   28篇
  2005年   17篇
  2004年   18篇
  2003年   17篇
  2002年   19篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
31.
32.

Background

Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.

Methods and Findings

Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER, PR, HER-2) of breast cancers with poor prognosis.

Conclusions

Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.  相似文献   
33.
34.
35.
Cancer survivors often relapse due to evolving drug-resistant clones and repopulating tumor stem cells. Our preclinical study demonstrated that terminal cancer patient's lymphocytes can be converted from tolerant bystanders in vivo into effective cytotoxic T-lymphocytes in vitro killing patient's own tumor cells containing drug-resistant clones and tumor stem cells. We designed a clinical trial combining peginterferon α-2b with imatinib for treatment of stage III/IV gastrointestinal stromal tumor (GIST) with the rational that peginterferon α-2b serves as danger signals to promote antitumor immunity while imatinib's effective tumor killing undermines tumor-induced tolerance and supply tumor-specific antigens in vivo without leukopenia, thus allowing for proper dendritic cell and cytotoxic T-lymphocyte differentiation toward Th1 response. Interim analysis of eight patients demonstrated significant induction of IFN-γ-producing-CD8(+), -CD4(+), -NK cell, and IFN-γ-producing-tumor-infiltrating-lymphocytes, signifying significant Th1 response and NK cell activation. After a median follow-up of 3.6 years, complete response (CR) + partial response (PR) = 100%, overall survival = 100%, one patient died of unrelated illness while in remission, six of seven evaluable patients are either in continuing PR/CR (5 patients) or have progression-free survival (PFS, 1 patient) exceeding the upper limit of the 95% confidence level of the genotype-specific-PFS of the phase III imatinib-monotherapy (CALGB150105/SWOGS0033), demonstrating highly promising clinical outcomes. The current trial is closed in preparation for a larger future trial. We conclude that combination of targeted therapy and immunotherapy is safe and induced significant Th1 response and NK cell activation and demonstrated highly promising clinical efficacy in GIST, thus warranting development in other tumor types.  相似文献   
36.
Cervical cancer is one of the most common cancers in women worldwide, being high-risk group the HPV infected, the leading etiological factor. The raf kinase inhibitory protein (RKIP) has been associated with tumor progression and metastasis in several human neoplasms, however its role on cervical cancer is unclear. In the present study, 259 uterine cervix tissues, including cervicitis, cervical intraepithelial lesions and carcinomas, were analyzed for RKIP expression by immunohistochemistry. We found that RKIP expression was significantly decreased during malignant progression, being highly expressed in non-neoplastic tissues (54% of the samples; 73/135), and expressed at low levels in the cervix invasive carcinomas (∼15% (19/124). Following in vitro downregulation of RKIP, we observed a viability and proliferative advantage of RKIP-inhibited cells over time, which was associated with an altered cell cycle distribution and higher colony number in a colony formation assay. An in vitro wound healing assay showed that RKIP abrogation is associated with increased migratory capability. RKIP downregulation was also associated with an increased vascularization of the tumors in vivo using a CAM assay. Furthermore, RKIP inhibition induced cervical cancer cells apoptotic resistance to cisplatin treatment. In conclusion, we described that RKIP protein is significantly depleted during the malignant progression of cervical tumors. Despite the lack of association with patient clinical outcome, we demonstrate, in vitro and in vivo, that loss of RKIP expression can be one of the factors that are behind the aggressiveness, malignant progression and chemotherapy resistance of cervical cancer.  相似文献   
37.
38.
The phorbol ester, tetradecanoyl-phorbol 13-acetate (TPA), stimulates rapid proteolytic processing of the transmembrane, pro- form of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at cell surfaces, suggesting the involvement of protein kinase C (PKC) isoforms in the HB-EGF secretion mechanism. To test this possibility, we expressed a chimeric protein, consisting of proHB-EGF fused to placental alkaline phosphatase (AP) near the amino terminus of processed HB-EGF, in NbMC-2 prostate epithelial cells. The proHB-EGF-AP chimera localized to plasma membranes and functioned as a diphtheria toxin receptor. Secreted HB-EGF-AP bound to heparin and exhibited potent growth factor activity. The presence of the AP moiety allowed highly quantitative measurements of cleavage-secretion responses of proHB-EGF to extracellular stimuli. As expected, rapid secretion of HB-EGF-AP was induced in a time- and dose-dependent manner by TPA. However, this was also observed with the Ca2+ionophore, ionomycin, suggesting the involvement of extracellular Ca2+ ions in the secretion mechanism. Ionomycin-induced secretion was inhibited by extracellular calcium chelation but not by the PKC inhibitors, GF109203X, staurosporine, or chelerythrine. The TPA-mediated secretion effect was inhibited by staurosporine, GF109203X, and by pretreatment with TPA, but not by calcium chelation. A small secretion response was induced by thapsigargin, which releases Ca2+ from intracellular stores, but this was completely eliminated by extracellular calcium chelation. Ionomycin- and TPA-induced HB-EGF-AP secretion was not dependent on the presence of the proHB-EGF cytoplasmic domain and was specifically inhibited by the metalloproteinase inhibitors 1,10-phenanthroline and tissue inhibitor of metalloproteinase-1 (TIMP-1). These data demonstrate that extracellular Ca2+ influx activates a membrane-associated metalloproteinase to process proHB-EGF by a pathway that does not require PKC. J. Cell. Biochem. 69:143–153, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
39.
40.
The pms1 mutants, isolated on the basis of sharply elevated meiotic prototroph frequencies for two closely linked his4 alleles, display pleiotropic phenotypes in meiotic and mitotic cells. Two isolates carrying recessive mutations in PMS1 were characterized. They identify a function required to maintain low postmeiotic segregation (PMS) frequencies at many heterozygous sites. In addition, they are mitotic mutators. In mutant diploids, spore viability is reduced, and among survivors, gene conversion and postmeiotic segregation frequencies are increased, but reciprocal exchange frequencies are not affected. The conversion event pattern is also dramatically changed in multiply marked regions in pms1 homozygotes. The PMS1 locus maps near MET4 on chromosome XIV. The PMS1 gene may identify an excision-resynthesis long patch mismatch correction function or a function that facilitates correction tract elongation. The PMS1 gene product may also play an important role in spontaneous mitotic mutation avoidance and correction of mismatches in heteroduplex DNA formed during spontaneous and UV-induced mitotic recombination. Based on meiotic recombination models emphasizing mismatch correction in heteroduplex DNA intermediates, this interpretation is favored, but alternative interpretations involving longer recombination intermediates in the mutants are also considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号