首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1328篇
  免费   170篇
  1498篇
  2022年   13篇
  2021年   17篇
  2019年   17篇
  2018年   23篇
  2017年   16篇
  2016年   34篇
  2015年   48篇
  2014年   53篇
  2013年   79篇
  2012年   66篇
  2011年   70篇
  2010年   39篇
  2009年   44篇
  2008年   67篇
  2007年   57篇
  2006年   47篇
  2005年   55篇
  2004年   31篇
  2003年   34篇
  2002年   40篇
  2001年   42篇
  2000年   27篇
  1999年   28篇
  1998年   21篇
  1997年   14篇
  1996年   18篇
  1995年   19篇
  1994年   17篇
  1993年   13篇
  1992年   21篇
  1991年   14篇
  1990年   24篇
  1989年   15篇
  1988年   20篇
  1987年   21篇
  1986年   18篇
  1985年   20篇
  1984年   15篇
  1983年   19篇
  1982年   14篇
  1981年   13篇
  1980年   17篇
  1977年   18篇
  1976年   10篇
  1975年   12篇
  1974年   23篇
  1973年   11篇
  1972年   12篇
  1971年   10篇
  1968年   18篇
排序方式: 共有1498条查询结果,搜索用时 11 毫秒
101.
102.
Genetic regulation of gibberellin deactivation in Pisum   总被引:2,自引:0,他引:2  
The regulation of gibberellin (GA) deactivation was examined using the sin (slender) mutation in the garden pea (Pisum sativum L.). This mutation blocks the deactivation of GA20, the precursor of the bioactive GA1. Firstly, crosses were made to combine sin with the GA biosynthesis mutations na, lhi and le-3. The combination sin na produced a novel phenotype, with long (‘slender’) basal internodes and extremely short (‘nana’) upper internodes. In contrast, the double mutant sin lhi was phenotypically dwarf. The mutation sin causes an accumulation of GA20 in maturing seeds, and this was unaffected by na, since the na mutation is not expressed in seeds. In contrast, lhi seeds did not accumulate GA20, since lhi imposes an early block on GA biosynthesis. Secondly, the effects of sin on several steps in GA deactivation were investigated. In maturing seeds, the mutation sin blocks two steps in GA20 metabolism, namely, GA20 to GA29, and GA29 to GA29-catabolite. In the vegetative plant, on the other hand, sin blocked the step GA20 to GA29, but not GA29 to GA29-catabolite; the steps GA20 to GA81 and GA20 to GA1 were also not impaired in this mutant. It is clear that the effects of sin, like those of na, are strongly organ-specific. The presence of separate enzymes for the steps GA20 to GA29 and GA29 to GA29-catabolite was suggested by the observation that GA8 inhibited the latter step, but not the former, and by the inability of GA20 and GA29 to inhibit each other's metabolism. It is suggested that the Sin gene may be a regulatory gene controlling the expression of two structural genes involved in GA deactivation.  相似文献   
103.
While the crocodyliform lineage extends back over 200 million years (Myr) to the Late Triassic, modern forms-members of Eusuchia-do not appear until the Cretaceous. Eusuchia includes the crown group Crocodylia, which comprises Crocodyloidea, Alligatoroidea and Gavialoidea. Fossils of non-crocodylian eusuchians are currently rare and, in most instances, fragmentary. Consequently, the transition from Neosuchia to Crocodylia has been one of the most poorly understood areas of crocodyliform evolution. Here we describe a new crocodyliform from the mid-Cretaceous (98-95 Myr ago; Albian-Cenomanian) Winton Formation of Queensland, Australia, as the most primitive member of Eusuchia. The anatomical changes associated with the emergence of this taxon indicate a pivotal shift in the feeding and locomotor behaviour of crocodyliforms-a shift that may be linked to the subsequent rapid diversification of Eusuchia 20 Myr later during the Late Cretaceous and Early Tertiary. While Laurasia (in particular North America) is the most likely ancestral area for Crocodylia, the biogeographic events associated with the origin of Eusuchia are more complex. Although the fossil evidence is limited, it now seems likely that at least part of the early history of Eusuchia transpired in Gondwana.  相似文献   
104.
Genome-wide association studies (GWAS) have identified thousands of genetic variants that are associated with complex traits. However, a stringent significance threshold is required to identify robust genetic associations. Leveraging relevant auxiliary covariates has the potential to boost statistical power to exceed the significance threshold. Particularly, abundant pleiotropy and the non-random distribution of SNPs across various functional categories suggests that leveraging GWAS test statistics from related traits and/or functional genomic data may boost GWAS discovery. While type 1 error rate control has become standard in GWAS, control of the false discovery rate can be a more powerful approach. The conditional false discovery rate (cFDR) extends the standard FDR framework by conditioning on auxiliary data to call significant associations, but current implementations are restricted to auxiliary data satisfying specific parametric distributions, typically GWAS p-values for related traits. We relax these distributional assumptions, enabling an extension of the cFDR framework that supports auxiliary covariates from arbitrary continuous distributions (“Flexible cFDR”). Our method can be applied iteratively, thereby supporting multi-dimensional covariate data. Through simulations we show that Flexible cFDR increases sensitivity whilst controlling FDR after one or several iterations. We further demonstrate its practical potential through application to an asthma GWAS, leveraging various functional genomic data to find additional genetic associations for asthma, which we validate in the larger, independent, UK Biobank data resource.  相似文献   
105.
Modifications of the analysis of protein-bound residues of γ-carboxyglutamic acid (Gla) via alkaline hydrolysis are presented. The method described allows easier sample manipulation than that heretofore required and insures quantitative recovery of hydrolyzed amino acids. A possible explanation of the shoulder which sometimes appears near Gla on some amino acid analyzers is presented.  相似文献   
106.
The nature of the interaction of insect cuticular proteins and chitin is unknown even though about half of the cuticular proteins sequenced thus far share a consensus region that has been predicted to be the site of chitin binding. We previously predicted the preponderance of a beta-pleated sheet in the consensus region and proposed its responsibility for the formation of helicoidal cuticle (Iconomidou et al., Insect Biochem. Mol. Biol. 29 (1999) 285). In this study, we examined experimentally the secondary structure of intact and guanidine hydrochloride extracted cuticle and the cuticular protein extract. The studied cuticle came from the larval dorsal abdomen of the lepidopteran Hyalophora cecropia, a classical example of "soft" cuticle. Analysis with FT-Raman, ATR FT-IR and CD spectroscopy indicates that antiparallel beta-pleated sheet is the predominant molecular conformation of "soft-cuticle" proteins both in situ in the cuticle and following extraction. It seems that this conformation dictates the modes of chitin-protein interaction in cuticle, in agreement with earlier proposals (Atkins, J. Biosci. 8 (1985) 375).  相似文献   
107.
108.
109.
Malignant transformation frequently involves aberrant signaling from receptor tyrosine kinases (RTKs). These receptors commonly activate Ras/Raf/MEK/MAPK signaling but when overactivated can also induce the JAK/STAT pathway, originally identified as the signaling cascade downstream of cytokine receptors. Inappropriate activation of STAT has been found in many human cancers. However, the contribution of the JAK/STAT pathway in RTK signaling remains unclear. We have investigated the requirement of the JAK/STAT pathway for signaling by wild-type and mutant forms of the RTK Torso (Tor) using a genetic approach in DROSOPHILA: Our results indicate that the JAK/STAT pathway plays little or no role in signaling by wild-type Tor. In contrast, we find that STAT, encoded by marelle (mrl; DStat92E), is essential for the gain-of-function mutant Tor (Tor(GOF)) to activate ectopic gene expression. Our findings indicate that the Ras/Raf/MEK/MAPK signaling pathway is sufficient to mediate the normal functions of wild-type RTK, whereas the effects of gain-of-function mutant RTK additionally require STAT activation.  相似文献   
110.
The interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC, TFIIIC131, and the TFIIB-related factor Brf1 represents a limiting step in the assembly of the RNA polymerase III (pol III) initiation factor TFIIIB. This assembly reaction is facilitated by dominant mutations that map in and around TPR2. Structural modeling of TPR1 to TPR3 from TFIIIC131 shows that one such mutation, PCF1-2, alters a residue in the ligand-binding groove of the TPR superhelix whereas another mutation, PCF1-1, changes a surface-accessible residue on the back side of the TPR superhelix. In this work, we show that the PCF1-1 mutation (H190Y) increases the binding affinity for Brf1, but does not affect the binding affinity for Bdp1, in the TFIIIC-dependent assembly of TFIIIB. Interestingly, binding studies with TFIIIC131 fragments indicate that Brf1 does not interact directly at the site of the PCF1-1 mutation. Rather, the data suggest that the mutation overcomes the previously documented autoinhibition of Brf1 binding. These findings together with the results from site-directed mutagenesis support the hypothesis that gain-of-function mutations at amino acid 190 in TPR2 stabilize an alternative conformation of TFIIIC131 that promotes its interaction with Brf1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号