首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   21篇
  258篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   11篇
  2014年   11篇
  2013年   14篇
  2012年   22篇
  2011年   12篇
  2010年   8篇
  2009年   9篇
  2008年   14篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   8篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   8篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
排序方式: 共有258条查询结果,搜索用时 0 毫秒
91.
92.
93.
A promising approach to adoptive transfer therapy of tumors is to reprogram autologous T lymphocytes by TCR gene transfer of defined Ag specificity. An obstacle, however, is the undesired pairing of introduced TCRalpha- and TCRbeta-chains with the endogenous TCR chains. These events vary depending on the individual endogenous TCR and they not only may reduce the levels of cell surface-introduced TCR but also may generate hybrid TCR with unknown Ag specificities. We show that such hybrid heterodimers can be generated even by the pairing of human and mouse TCRalpha- and TCRbeta-chains. To overcome this hurdle, we have identified a pair of amino acid residues in the crystal structure of a TCR that lie at the interface of associated TCR Calpha and Cbeta domains and are related to each other by both a complementary steric interaction analogous to a "knob-into-hole" configuration and the electrostatic environment. We mutated the two residues so as to invert the sense of this interaction analogous to a charged "hole-into-knob" configuration. We show that this inversion in the CalphaCbeta interface promotes selective assembly of the introduced TCR while preserving its specificity and avidity for Ag ligand. Noteworthily, this TCR modification was equally efficient on both a Mu and a Hu TCR. Our data suggest that this approach is generally applicable to TCR independently of their Ag specificity and affinity, subset distribution, and species of origin. Thus, this strategy may optimize TCR gene transfer to efficiently and safely reprogram random T cells into tumor-reactive T cells.  相似文献   
94.
Connexin oligomerization and trafficking are regulated processes. To identify proteins that control connexin 43 (Cx43), a screen was designed using HeLa cells expressing a Cx43 construct with di-lysine endoplasmic reticulum (ER)-retention/retrieval motif, Cx43-HKKSL. At moderate levels of expression, Cx43-HKKSL is retained in the ER as monomers; however, Cx43-HKKSL stably overexpressed by HeLa cells localizes to the perinuclear region and oligomerizes. HeLa/Cx43-HKKSL overexpressors were transiently transfected with pooled clones from a human kidney cDNA library and used immunofluorescence microscopy to identify cDNAs that enabled overexpressed Cx43-HKKSL to convert from a perinuclear to ER localization pattern. Using this approach, a small molecular weight GTPase, rab20, was identified as a candidate protein with the ability to regulate Cx43 trafficking. Enhanced green fluorescent protein (EGFP)-tagged rab20 showed a predominantly perinuclear and ER localization pattern and caused wild-type Cx43 to be retained inside the cell. By contrast, mutant EGFP-rab20T19N, which lacks the ability to bind GTP, had no effect on Cx43. These results suggest Cx43 is transported through an intracellular compartment regulated by rab20 along the secretory pathway.  相似文献   
95.
Pathogenic mycobacteria have the ability to persist in phagocytic cells and to suppress the immune system. The glycolipid lipoarabinomannan (LAM), in particular its mannose cap, has been shown to inhibit phagolysosome fusion and to induce immunosuppressive IL−10 production via interaction with the mannose receptor or DC-SIGN. Hence, the current paradigm is that the mannose cap of LAM is a crucial factor in mycobacterial virulence. However, the above studies were performed with purified LAM, never with live bacteria. Here we evaluate the biological properties of capless mutants of Mycobacterium marinum and M. bovis BCG, made by inactivating homologues of Rv1635c. We show that its gene product is an undecaprenyl phosphomannose-dependent mannosyltransferase. Compared with parent strain, capless M. marinum induced slightly less uptake by and slightly more phagolysosome fusion in infected macrophages but this did not lead to decreased survival of the bacteria in vitro , nor in vivo in zebra fish. Loss of caps in M. bovis BCG resulted in a sometimes decreased binding to human dendritic cells or DC-SIGN-transfected Raji cells, but no differences in IL-10 induction were observed. In mice, capless M. bovis BCG did not survive less well in lung, spleen or liver and induced a similar cytokine profile. Our data contradict the current paradigm and demonstrate that mannose-capped LAM does not dominate the Mycobacterium –host interaction.  相似文献   
96.
Fragile X syndrome represents the most common inherited cause of mental retardation. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced, resulting in the fragile X phenotype. Both X chromosome inactivation and inactivation of the FMR1 gene are the result of methylation. X inactivation occurs earlier than inactivation of the FMR1 gene. The instability to a full mutation is dependent on the sex of the transmitting parent and occurs only from mother to child. For most X-chromosomal diseases, female carriers do not express the phenotype. A clear exception is fragile X syndrome. It is clear that more than 50% of the neurons have to express the protein to ensure a normal phenotype in females. This means that a normal phenotype in female carriers of a full mutation is accompanied by a distortion of the normal distribution of X inactivation.  相似文献   
97.

Introduction  

Rheumatoid arthritis (RA) improves during pregnancy and flares after delivery. It has been hypothesized that high levels of the complement factor mannose-binding lectin (MBL) are associated with a favourable disease course of RA by facilitating the clearance of pathogenic immunoglobulin G (IgG) lacking galactose sugar moieties. During pregnancy, increased galactosylation of IgG and simultaneously increased MBL levels can be observed, with the latter being strictly related to maternal MBL genotypes. Therefore, increased MBL levels in concert with increased IgG galactosylation may be associated with pregnancy-induced improvement of RA. The objective of this study was to investigate whether MBL genotypes are associated with changes in RA disease activity and with changes in IgG galactosylation during pregnancy and in the postpartum period. We also studied the association between MBL genotypes and pregnancy outcomes in RA.  相似文献   
98.
The molecular mechanism of the fragile X syndrome is based on the expansion of an CGG repeat in the 5' UTR of the FMR1 gene in the majority of fragile X patients. This repeat displays instability both between individuals and within an individual. We studied the instability of the CGG repeat and the expression of the FMR1 protein (FMRP) in several different tissues derived from a male fragile X patient. Using Southern blot analysis, only a full mutation is detected in 9 of the 11 tissues tested. The lung tumor contains a methylated premutation of 160 repeats, whereas in the testis, besides the full mutation, a premutation of 60 CGG repeats is detected. Immunohistochemistry of the testis revealed expression of FMR1 in the spermatogonia only, confirming the previous finding that, in the sperm cells of fragile X patients with a full mutation in their blood cells, only a premutation is present. Immunohistochemistry of brain and lung tissue revealed that 1% of the cells are expressing the FMRP. PCR analysis demonstrated the presence of a premutation of 160 repeats in these FMR1-expressing cells. This indicates that the tumor was derived from a lung cell containing a premutation. Remarkably, despite the methylation of the EagI and BssHII sites, FMRP expression is detected in the tumor. Methylation of both restriction sites has thus far resulted in a 100% correlation with the lack of FMR1 expression, but the results found in the tumor suggest that the CpGs in these restriction sites are not essential for regulation of FMR1 expression. This indicates a need for a more accurate study of the exact promoter of FMR1.  相似文献   
99.
Fragile X syndrome is caused by the absence of expression of the FMR1 gene. Both FXR1 and FXR2 are autosomal gene homologues of FMR1. The products of the three genes are belonging to a family of RNA-binding proteins, called FMRP, FXR1P, and FXR2P, respectively, and are associated with polyribosomes as cytoplasmic mRNP particles. The aim of the present study is to obtain more knowledge about the cellular function of the three proteins (Fxr proteins) and their interrelationships in vivo. We have utilized monospecific antibodies raised against each of these proteins and performed Western blotting and immunolabeling at the light-microscopic level on tissues of wild-type and Fmr1 knockout adult mice. In addition, we have performed immunoelectron microscopy on hippocampal neurons of wild-type mice to study the subcellular distribution of the Fxr proteins. A high expression was found in brain and gonads for all three proteins. Skeletal muscle tissue showed only a high expression for Fxr1p. In the brain the three proteins were colocalized in the cytoplasm of the neurons; however, in specific neurons Fxr1p was also found in the nucleolus. Immunoelectronmicrsocopy on hippocampal neurons demonstrated the majority of the three proteins in association with ribosomes and a minority in the nucleus. The colocalization of the Fxr proteins in neurons is consistent with similar cellular functions in those specific cells. The presence of the three proteins in the nucleus of hippocampal neurons suggests a nucleocytoplasmic shuttling for the Fxr proteins. In maturing and adult testis a differential expression was observed for the three proteins in the spermatogenic cells. The similarities and differences between the distribution of the Fxr proteins have implications with respect to their normal function and the pathogenesis of the fragile X syndrome.  相似文献   
100.
Angiosperm resurrection plants exhibit poikilo‐ or homoiochlorophylly as a response to water deficit. Both strategies are generally considered as effective mechanisms to reduce oxidative stress associated with photosynthetic activity under water deficiency. The mechanism of water deficit‐induced chlorophyll (Chl) degradation in resurrection plants is unknown but has previously been suggested to occur as a result of non‐enzymatic photooxidation. We investigated Chl degradation during dehydration in both poikilochlorophyllous (Xerophyta viscosa) and homoiochlorophyllous (Craterostigma pumilum) species. We demonstrate an increase in the abundance of PHEOPHORBIDE a OXYGENASE (PAO), a key enzyme of Chl breakdown, together with an accumulation of phyllobilins, that is, products of PAO‐dependent Chl breakdown, in both species. Phyllobilins and PAO levels diminished again in leaves from rehydrated plants. We conclude that water deficit‐induced poikilochlorophylly occurs via the well‐characterized PAO/phyllobilin pathway of Chl breakdown and that this mechanism also appears conserved in a resurrection species displaying homoiochlorophylly. The roles of the PAO/phyllobilin pathway during different plant developmental processes that involve Chl breakdown, such as leaf senescence and desiccation, fruit ripening and seed maturation, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号