首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   34篇
  318篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   16篇
  2006年   10篇
  2005年   5篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  2001年   12篇
  2000年   11篇
  1999年   17篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   10篇
  1991年   8篇
  1990年   3篇
  1988年   2篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   9篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1978年   6篇
  1976年   3篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1970年   3篇
  1969年   2篇
  1967年   2篇
  1932年   3篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
131.
Summary Frequencies of scaphognathite (ventilatory,f sc) and heart (f h) pumping, oxygen consumption ( ), and hemolymph oxygen, carbon dioxide and pH levels were measured in adult Dungeness crabs (Cancer magister) during 7–10 day periods of exposure to 7, 12, and 17°C seawater. Ventilation volume ( ) was calculated for individual animals fromf sc and a previously determined relationship between stroke volume and animal mass. increases (Q10=2.3) with temperature were associated with larger increases inf sc (Q10=3.3) and (Q10=3.5) and smaller increases inf h (Q10=1.5). The incidence of unilateral scaphognathite pumping and pausing decreased as temperature rose.Postbranchial oxygen tension was maintained in vivo but hemolymph oxygen content decreased both in vivo and in vitro as temperature rose. Postbranchial carbon dioxide tension did not change significantly but relative alkalinity was maintained as temperature rose by loss of hemolymph bicarbonate. The effects of increased ventilation volume and potential mechanisms of bicarbonate regulation are discussed.The responses of the essentially subtidalCancer magister are compared with those of subtidal, intertidal and terrestrial crabs demonstrating that the concepts of acid-base regulation developed for water and air breathing vertebrates are also applicable to water and air breathing crabs, and that intertidal crabs may exhibit transitional states.This work was supported by Grant No. A.5762 National Research Council of Canada  相似文献   
132.
The effect of different temperatures (4 degrees C and 12 degrees C) on myogenic regulatory factors (MyoD and myogenin) and myosin heavy chain (MyHC) expression was investigated in rainbow trout (Onchrhynchus mykiss) during early development. MyoD is first switched on at stage 14 [about 5 somites are formed (1/2 epiboly)] while myogenin mRNA is expressed at stage 15 [around 15 somites are visible (2/3 epiboly)] at both temperatures. Subsequently (up to at least stage 20), the most caudal somites exhibit less myogenin mRNA at 4 degrees C compared to 12 degrees C. At the eyed stage (stage 23-24), both myogenin mRNA and protein are present in greater amounts throughout all myotomes at the lower temperature, with mRNA levels in warmer (12 degrees C) embryos at 83% for MyoD and 72% for myogenin of the levels seen in 4 degrees C embryos. Conversely, however, at this same stage, fast-MyHC mRNA and protein are more abundant in 12 degrees C than in 4 degrees C embryos. This indicates relatively advanced muscle differentiation at the warmer temperature. At hatching, myogenin-positive cells are concentrated within the myosepta at both temperatures and they are also sparsely distributed in the myotome at 4 degrees C, but not at 12 degrees C. MyoD, myogenin, and MyHC levels provide an indication of differentiation of muscle cells. These findings suggest that myogenic regulatory factor expression is delayed but prolonged by the lowering of temperature.  相似文献   
133.
A series of novel 8-amino-1,3-disubstituted-imidazo[1,5-a]pyrazines was designed and synthesized as IGF-IR inhibitors.  相似文献   
134.

Background

Identifying eye movement related areas in the frontal lobe has a long history, with microstimulation in monkeys producing the most clear-cut results. For humans, however, there is still no consensus about the location and the extent of the frontal eye field (FEF). There is also no simple non-invasive method for unambiguously defining the FEF in individual subjects, a prerequisite for clinical applications. Here we explore the use of magnetoencephalography (MEG) for the non-invasive identification and characterization of FEF activity in an individual subject.

Methods

We mapped human brain activity before, during and after saccades by applying tomographic analysis to MEG data. Statistical parametric maps and circular statistics produced plausible FEF loci, but no unambiguous definition for individual subjects. Here we first computed the spectral decomposition and correlation with electrooculogram (EOG) of the tomographic brain activations. For each of these two measures statistical comparisons were made between different saccades.

Results

In this paper, we first review the frontal cortex activations identified in earlier animal and human studies and place the putative human FEFs in a well-defined anatomical framework. This framework is then used as reference for describing the results of new Fourier analysis of the tomographic solutions comparing active saccade tasks and their controls. The most consistent change in the dorsal frontal cortex was at the putative left FEF, for both saccades to the left and right. The asymmetric result is consistent with the 1-way callosal traffic theory. We also showed that the new correlation analysis had its most consistent change in the contralateral putative FEF. This result was obtained for EOG latencies before saccade onset with delays of a few hundreds of milliseconds (FEF activity leading the EOG) and only for visual cues signaling the execution of a saccade in a previously defined saccade direction.

Conclusions

The FEF definition derived from microstimulation describes only one of the areas in the dorsal lateral frontal lobe that act together to plan, prepare and execute a saccade. The definition and characterization of these areas in an individual subject can be obtained from non-invasive MEG measurements.
  相似文献   
135.
136.
137.
Trautwein K  Wilkes H  Rabus R 《Proteomics》2012,12(9):1402-1413
The betaproteobacterium "Aromatoleum aromaticum" EbN1 utilizes eight different plant-derived nonhydroxylated (e.g. cinnamate) and hydroxylated (e.g. p-coumarate) 3-phenylpropanoids with nitrate as electron acceptor. Differential protein profiling (2D-DIGE) revealed abundance increases of five proteins (EbA5316 to EbA5320) during anaerobic growth with cinnamate, hydrocinnamate, p-coumarate, and 3-(4-hydroxyphenyl)propanoate, compared to anaerobic benzoate-adapted cells serving as reference state. The predicted functions of four of these proteins (EbA5317, fatty acid-coenzyme A (CoA) ligase; EbA5318, enoyl-CoA hydratase/isomerase; EbA5319, β-ketothiolase; and EbA5320, 3-hydroxyacyl-CoA dehydrogenase) suggest β-oxidation of the above 3-phenylpropanoids to benzoyl-CoA and p-hydroxybenzoyl-CoA, respectively. The fifth protein (EbA5316, ABC-type periplasmic solute-binding protein) could be involved in 3-phenylpropanoid uptake. The detection of 3-hydroxy-3-phenylpropanoate during anaerobic growth with cinnamate and hydrocinnamate or 3-hydroxy-3-(4-hydroxyphenyl)propanoate during anaerobic growth with p-coumarate and 3-(4-hydroxyphenyl)propanoate supports the proteome-predicted β-oxidation pathway. Based on the specific formation of EbA5316-20 also during anaerobic growth with further 3-phenylpropanoid growth substrates including cinnamyl alcohol, m-coumarate, 3-(3,4-dihydroxyphenyl)propanoate and 3,4-dihydroxycinnamate (caffeate), a common β-oxidation route is proposed for 3-phenylpropanoid degradation in strain EbN1. The low amount of metabolites attributable to cometabolic transformation of nongrowth supporting 3-phenylpropanoids (e.g. o-coumarate, ferulate) may be indicative for a high substrate specificity of the involved enzymes.  相似文献   
138.
139.

Background

Saccadic eye movements align the two eyes precisely to foveate a target. Trial-by-trial variance of eye movement is always observed within an identical experimental condition. This has often been treated as experimental error without addressing its significance. The present study examined statistical linkages between the two eyes’ movements, namely interocular yoking, for the variance of eye position and velocity.

Methods

Horizontal saccadic movements were recorded from twelve right-eye-dominant subjects while they decided on saccade direction in Go-Only sessions and on both saccade execution and direction in Go/NoGo sessions. We used infrared corneal reflection to record simultaneously and independently the movement of each eye. Quantitative measures of yoking were provided by mutual information analysis of eye position or velocity, which is sensitive to both linear and non-linear relationships between the eyes’ movements. Our mutual information analysis relied on the variance of the eyes movements in each experimental condition. The range of movements for each eye varies for different conditions so yoking was further studied by comparing GO-Only vs. Go/NoGo sessions, leftward vs. rightward saccades.

Results

Mutual information analysis showed that velocity yoking preceded positional yoking. Cognitive load increased trial variances of velocity with no increase in velocity yoking, suggesting that cognitive load may alter neural processes in areas to which oculomotor control is not tightly linked. The comparison between experimental conditions showed that interocular linkage in velocity variance of the right eye lagged that of the left eye during saccades.

Conclusions

We conclude quantitative measure of interocular yoking based on trial-to-trial variance within a condition, as well as variance between conditions, provides a powerful tool for studying the binocular movement mechanism.
  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号