首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   34篇
  302篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   9篇
  2011年   12篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2007年   15篇
  2006年   9篇
  2005年   5篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   12篇
  2000年   11篇
  1999年   14篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   10篇
  1991年   8篇
  1990年   3篇
  1988年   2篇
  1987年   7篇
  1986年   6篇
  1985年   3篇
  1984年   9篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1978年   6篇
  1976年   3篇
  1974年   3篇
  1973年   6篇
  1972年   4篇
  1970年   3篇
  1969年   2篇
  1967年   2篇
  1932年   3篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
71.
The ability of the dibenzofuran- and dibenzo-p-dioxin-mineralizing bacterium Sphingomonas sp. strain RW1 (R.-M. Wittich, H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel, Appl. Environ. Microbiol. 58:1005-1010, 1992) to oxidize chlorinated derivatives of dibenzofuran and dibenzo-p-dioxin was analyzed. Strain RW1 degraded several mono- and dichlorinated dibenzofurans and dibenzo-p-dioxins, but it did not degrade more highly chlorinated congeners. Most mono- and dichlorinated dibenzofurans and dibenzo-p-dioxins investigated in this study were degraded to the corresponding mono- and dichlorinated salicylates and catechols, respectively, together with salicylate and catechol. This indicates an initial dioxygenolytic attack on the substituted as well as on the nonsubstituted aromatic nucleus of most of the target compounds. Strain RW1 could not grow at the expense of monochlorinated dibenzo-p-dioxins and dibenzofurans as carbon sources, with the exception of 4-chlorodibenzofuran, which was stoichiometrically converted to 3-chlorosalicylate.  相似文献   
72.
Lung dendritic cells (DCs) are difficult to study due to their limited quantities and the complexities required for isolation. Although many procedures have been used to overcome this challenge, the effects of isolation techniques on lung DCs have not been reported. The current study shows that freshly isolated DCs (CD11c+) have limited ability to induce proliferation in allogeneic T cells, and are immature as indicated by low cell surface expression of costimulatory molecules compared with liver or splenic DCs. DCs isolated after overnight culture or from mice treated with Flt3L are phenotypically mature and potent stimulators of allogeneic T cells. DCs could not be propagated from lung mononuclear cells in response to IL-4 and GM-CSF. Contrary to data reported for nonpulmonary DCs, expression of CCR6 was decreased on mature lung DCs, and only a subset of mature DCs expressed higher levels of CCR7. Absence of CD8alpha expression indicates that freshly isolated DCs are myeloid-type, whereas mature DCs induced by overnight culture are both "lymphoid" (CD8alpha+) and "myeloid" (CD8alpha-). DCs from mice genetically deficient in CD8alpha expression were strong simulators of allogeneic T cells which was consistent with data showing that CD8alpha- DCs from CD8alpha-sufficient mice are better APCs compared with CD8alpha+ DCs from the same mice. These data show that freshly isolated lung DCs are phenotypically and functionally distinct, and that the isolation technique alters the biology of these cells. Therefore, lung DC phenotype and function must be interpreted relative to the technique used for isolation.  相似文献   
73.

Background

Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs) stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs) and plasmacytoid (pDCs) are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown.

Methods

Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d) prior to transplanting into C57BL/6 mice (H-2b), followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+).

Results

Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production.

Conclusion

Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.  相似文献   
74.
The binding properties of seven CD4-blocking monoclonal antibodies raised against recombinant gp120 of human immunodeficiency virus type 1 strain MN (HIV-1MN) and two CD4-blocking monoclonal antibodies to recombinant envelope glycoproteins gp120 and gp160 of substrain IIIB of HIVLAI were analyzed. With a panel of recombinant gp120s from seven diverse HIV-1 isolates, eight of the nine antibodies were found to be strain specific and one was broadly cross-reactive. Epitope mapping revealed that all nine antibodies bound to epitopes located in the fourth conserved domain (C4) of gp120. Within this region, three distinct epitopes could be identified: two were polymorphic between HIV-1 strains, and one was highly conserved. Studies with synthetic peptides demonstrated that the conserved epitope, recognized by antibody 13H8, was located between residues 431 and 439. Site-directed mutagenesis of gp120 demonstrated that residue 429 and/or 432 was critical for the binding of the seven antibodies to gp120 from HIV-1MN. Similarly, residues 423 and 429 were essential for the binding of monoclonal antibody 5C2 raised against gp120 from HIV-1IIIB. The amino acids located at positions 423 and 429 were found to vary between strains of HIV-1 as well as between molecular clones derived from the MN and LAI isolates of HIV-1. Polymorphism at these positions prevented the binding of virus-neutralizing monoclonal antibodies and raised the possibility that HIV-1 neutralization serotypes may be defined on the basis of C4 domain sequences. Analysis of the binding characteristics of the CD4-blocking antibodies demonstrated that their virus-neutralizing activity was directly proportional to their gp120-binding affinity. These studies account for the strain specificity of antibodies to the C4 domain of gp120 and demonstrate for the first time that antibodies to this region can be as effective as those directed to the principal neutralizing determinant (V3 domain) in neutralizing HIV-1 infectivity.  相似文献   
75.
Two Pseudomonas sp. strains, capable of growth on chlorinated benzenes as the sole source of carbon and energy, were isolated by selective enrichment from soil samples of an industrial waste deposit. Strain PS12 grew on monochlorobenzene, all three isomeric dichlorobenzenes, and 1,2,4-trichlorobenzene (1,2,4-TCB). Strain PS14 additionally used 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB). During growth on these compounds both strains released stoichiometric amounts of chloride ions. The first steps of the catabolism of 1,2,4-TCB and 1,2,4,5-TeCB proceeded via dioxygenation of the aromatic nuclei and furnished 3,4,6-trichlorocatechol. The intermediary cis-3,4,6-trichloro-1,2-dihydroxycyclohexa-3,5-diene (TCB dihydrodiol) formed from 1,2,4-TCB was rearomatized by an NAD+-dependent dihydrodiol dehydrogenase activity, while in the case of 1,2,4,5-TeCB oxidation the catechol was obviously produced by spontaneous elimination of hydrogen chloride from the initially formed 1,3,4,6-tetrachloro-1,2-dihydroxycyclohexa-3,5-diene. Subsequent ortho cleavage was catalyzed by a type II catechol 1,2-dioxygenase producing the corresponding 2,3,5-trichloromuconate which was channeled into the tricarboxylic acid pathway via an ordinary degradation sequence, which in the present case included 2-chloro-3-oxoadipate. From the structure-related compound 2,4,5-trichloronitrobenzene the nitro group was released as nitrite, leaving the above metabolite as 3,4,6-trichlorocatechol. Enzyme activities for the oxidation of chlorobenzenes and halogenated metabolites were induced by both strains during growth on these haloaromatics and, to a considerable extent, during growth of strain PS12 on acetate.  相似文献   
76.
Millard JT  Wilkes EE 《Biochemistry》2001,40(35):10677-10685
Diepoxyalkanes form interstrand cross-links in DNA oligomers preferentially at 5'-GNC sites. We have examined cross-linking by 1,2,3,4-diepoxybutane (DEB) and 1,2,7,8-diepoxyoctane (DEO) within a fragment of the 5S RNA gene of Xenopus borealis in both the free and nucleosomal states. Sites and efficiencies of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. Both agents targeted 5'-GNC sites for cross-linking in the restriction fragment in its free state, and DEO also targeted 5'-GNNC sites. Monoalkylation occurred at all deoxyguanosines. The sites for both monoalkylation and interstrand cross-linking were similar in nucleosomal and free DNA, and cross-linked DNA was cleanly incorporated into the core particle structure. These findings suggest that the 5S core particle is able to tolerate any structural abnormalities induced by diepoxide cross-linking.  相似文献   
77.
Anaerobic degradation of the aromatic hydrocarbon ethylbenzene was studied with sulfate as the electron acceptor. Enrichment cultures prepared with marine sediment samples from different locations showed ethylbenzene-dependent reduction of sulfate to sulfide and always contained a characteristic cell type that formed gas vesicles towards the end of growth. A pure culture of this cell type, strain EbS7, was isolated from sediment from Guaymas Basin (Gulf of California). Complete mineralization of ethylbenzene coupled to sulfate reduction was demonstrated in growth experiments with strain EbS7. Sequence analysis of the 16S rRNA gene revealed a close relationship between strain EbS7 and the previously described marine sulfate-reducing strains NaphS2 and mXyS1 (similarity values, 97.6 and 96.2%, respectively), which grow anaerobically with naphthalene and m-xylene, respectively. However, strain EbS7 did not oxidize naphthalene, m-xylene, or toluene. Other compounds utilized by strain EbS7 were phenylacetate, 3-phenylpropionate, formate, n-hexanoate, lactate, and pyruvate. 1-Phenylethanol and acetophenone, the characteristic intermediates in anaerobic ethylbenzene degradation by denitrifying bacteria, neither served as growth substrates nor were detectable as metabolites by gas chromatography-mass spectrometry in ethylbenzene-grown cultures of strain EbS7. Rather, (1-phenylethyl)succinate and 4-phenylpentanoate were detected as specific metabolites in such cultures. Formation of these intermediates can be explained by a reaction sequence involving addition of the benzyl carbon atom of ethylbenzene to fumarate, carbon skeleton rearrangement of the succinate moiety (as a thioester), and loss of one carboxyl group. Such reactions are analogous to those suggested for anaerobic n-alkane degradation and thus differ from the initial reactions in anaerobic ethylbenzene degradation by denitrifying bacteria which employ dehydrogenations.  相似文献   
78.

Background

Plasmodium falciparum -parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy.

Methods

Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp 60/70–2/70–3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane.

Results

In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites.

Conclusion

Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs.  相似文献   
79.
A theoretical conformational analysis (molecular mechanics study) of nine cyclic tetrapeptides, structurally related to the highly mu-receptor-selective dermorphin analogue H-Tyr-D-Orn-Phe-Asp-NH2, was performed. These compounds display considerable diversity in their mu-receptor affinity and selectivity. A systematic search and subsequent energy minimization in absence of the exocyclic Tyr1 residue and Phe3 side chain revealed the constrained nature of the 11-13-membered ring structures contained in these analogues. No more than four low-energy conformers (within 2 kcal/mol of the lowest energy conformation) were found in each case. After attachment of the Tyr1 moiety and Phe3 side chain to the "bare" low-energy ring structures, a systematic search and energy minimization of these exocyclic moieties resulted in a limited number of low-energy conformational families for all compounds. Five analogues with high mu-receptor affinity--H-Tyr-D-Orn-Phe-Asp-NH2, H-Tyr-D-Orn-Phe-D-Asp-NH2, H-Tyr-D-Asp-Phe-Orn-NH2, H-Tyr-D-Asp-Phe-A2bu-NH2 (A2 bu: alpha, gamma-diaminobutyric acid) and H-Tyr-D-Cys-Phe-Cys-NH2--all showed a tilted stacking interaction between the Tyr1 and Phe3 aromatic rings in the lowest or second lowest energy conformation found. The same kind of stacking was not possible in low-energy conformers of the four analogues with poor affinity for the mu-receptor [H-Tyr-L-Orn-Phe-Asp-NH2, H-Tyr-D-Orn-D-Phe-Asp-NH2, H-Tyr-D-Orn-Phe(NMe)-Asp-NH2 [Phe(NMe): N alpha-methylphenylalanine], and H-Tyr-D-Orn-Phg-Asp-NH2 (Phg: phenylglycine)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
80.
Pyrolysis mass spectrometry was investigated for rapid characterization of bacteria. Spectra of Salmonella were compared to their serovars, pulsed-field gel electrophoresis (PFGE) patterns, antibiotic resistance profiles, and MIC values. Pyrolysis mass spectra generated via metastable atom bombardment were analyzed by multivariate principal component-discriminant analysis and artificial neural networks (ANNs). Spectral patterns developed by discriminant analysis and tested with Leave-One-Out (LOO) cross-validation distinguished Salmonella strains by serovar (97% correct) and by PFGE groups (49%). An ANN model of the same PFGE groups was cross-validated, using the LOO rule, with 92% agreement. Using an ANN, thirty previously unseen spectra were correctly classified by serotype (97%) and at the PFGE level (67%). Attempts by ANN to model spectra grouped by resistance profile-but ignoring PFGE or serotype-failed (10% correct), but ANNs differentiating ten samples of the same serotype/PFGE class were more successful. To assess the information content of PyMS data serendipitously associated with or directly related to resistance character, the ten isolates were grouped into four, three, or two categories. The four categories corresponded to four resistance profiles. The four class and three class ANNs showed much improved but insufficient modeling power. The two-class ANN and a corresponding multivariate model maximized inferential power for a coarse antibiotic-resistance-related distinction. They each cross-validated by LOO at 90%. This is the first direct correlation of pyrolysis metastable atom bombardment mass spectrometry with immunological (e.g. serology) or molecular biology (e.g. PFGE) based techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号