首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   21篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   17篇
  2011年   14篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   10篇
  2001年   10篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   12篇
  1996年   5篇
  1995年   3篇
  1994年   8篇
  1993年   1篇
  1992年   9篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1980年   3篇
  1979年   6篇
  1978年   1篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   5篇
  1971年   1篇
  1970年   3篇
  1968年   1篇
  1959年   1篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
131.
Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with high affinity to form a stable heterodimer. Analyses by gel filtration chromatography and analytical ultracentrifugation show the heterodimer to have an elongated shape, and the preparation to be monodisperse. Thermal denaturation analyses by CD and differential scanning calorimetry revealed the more cooperative unfolding transitions of the heterodimer in comparison to those of the individual polypeptides. The data are consistent with the EH heterodimer forming the peripheral stalk(s) in the A-ATPase in a fashion analogous to that of the related vacuolar ATPase.  相似文献   
132.

Background  

Many bacteria swim by rotating helical flagellar filaments [1]. Waterbury et al. [15] discovered an exception, strains of the cyanobacterium Synechococcus that swim without flagella or visible changes in shape. Other species of cyanobacteria glide on surfaces [2,7]. The hypothesis that Synechococcus might swim using traveling surface waves [6,13] prompted this investigation.  相似文献   
133.
Vacuolar adenosine triphosphatases (V-ATPases) represent an important class of proton pumps found in endomembrane systems of eucaryotic cells, where they are involved in pH regulation. Progress has been made in the structure determination of this large, membrane-bound multisubunit enzyme complex. Electron microscopy of the V-ATPase has revealed a ball-and-stalk-like structure similar to F1F0-type ATP synthase, to which the V-ATPase is evolutionary related. Aside from the overall structural similarity of the V-ATPase and F-ATP synthase, a number of distinct structural differences exist between the two related enzymes, giving clues to their different function and regulation in the organism.  相似文献   
134.
In Jasus edwardsii (Hutton) the vascular resistance of each of the seven major arterial systems leaving the heart was increased in response to several of the following neurotransmitters and neurohormones: acetylcholine, adrenalin, serotonin, dopamine, octopamine and peptides proctolin and FLRFamide-related peptide F(1). The resistance to flow through the infrabranchial sinus (IBS), part of the venous system, was also sensitive to these drugs. Unexpectedly, the responses of the IBS continued after removal of the gills. Differences in the profiles of responses of the arteries to individual hormones and in the magnitudes and the time courses of back pressure changes, eliminate a common downstream location such as the venous sinuses or gills, as the source of the arterial responses. Vasoactive drugs were effective when applied either via the lumen or, with longer delay, to the basal side of an artery via the IBS. It is concluded that the resistance of each of these sections of the vascular system is independently controllable by hormones.  相似文献   
135.
Dehydrins (DHNs; late embryogenesis abundant D-11) are a family of plant proteins induced in response to abiotic stresses such as drought, low temperature, and salinity or during the late stages of embryogenesis. Spectral and thermal properties of these proteins in purified form suggest that they are "intrinsically unstructured." However, DHNs contain at least one copy of a consensus 15-amino acid sequence, the "K segment," which resembles a class A2 amphipathic alpha-helical, lipid-binding domain found in other proteins such as apolipoproteins and alpha-synuclein. The presence of the K segment raises the question of whether DHNs bind lipids, bilayers, or phospholipid vesicles. Here, we show that maize (Zea mays) DHN DHN1 can bind to lipid vesicles that contain acidic phospholipids. We also observe that DHN1 binds more favorably to vesicles of smaller diameter than to larger vesicles, and that the association of DHN1 with vesicles results in an apparent increase of alpha-helicity of the protein. Therefore, DHNs, and presumably somewhat similar plant stress proteins in the late embryogenesis abundant and cold-regulated classes may undergo function-related conformational changes at the water/membrane interface, perhaps related to the stabilization of vesicles or other endomembrane structures under stress conditions.  相似文献   
136.
The T-tubules and sarcoplasmic reticulum (SR) serving excitation-contraction (EC) coupling in lobster (Homarus americanus) cardiac muscle are similar to those in mammalian myocardium. Tetanic contraction is elicited by a burst of action potentials from the cardiac ganglion. In this study we evaluated the roles of the sarcolemma and SR in EC coupling of the ostial valve muscle (orbicularis ostii m. or OOM) of lobster heart. The OOM was mounted in a bath with saline on a microscope stage; force was measured by strain gauge. [Ca2+]i was measured using iontophoretically micro-injected fura-2 salt. Peak [Ca+]i, peak tetanic force and time to peak [Ca2+]i increased with that of stimulus train duration (TD), to a maximum at a TD of 500 ms. Force increased with [Ca2+]. Cd2+ reduced force by 90%; ryanodine and caffeine reduced tetanic [Ca2+]i transients by 80% and 70%, and force by 90% and 80%, respectively. Ryanodine, caffeine and cyclopiazonic acid slowed the decline of [Ca2+]i and force during relaxation. Relaxation required [Na+]o. The rate of decline of [Ca2+]i appeared to be a sigmoidal function of the [Ca2+]i and increased for any [Ca2+]i with TD. Inactivity slowed relaxation of force; stimulation accelerated relaxation. These data suggest important contributions of Ca2+ transport both across the sarcolemma and across the SR membrane during EC-coupling of lobster cardiac muscle, while average cytosolic [Ca2+]i regulates the rate of [Ca2+]i elimination during relaxation.  相似文献   
137.
Astyanax fasciatus has become a model organism for the study of regressive and adaptive evolution in cave animals. To fully understand these processes, it is important to have background information on the systematics and phylogeography of surface and cave populations of this species. Here we investigate the phylogeography of A. fasciatus in North and Central America and also the historical biogeography of this region. Phylogenetic analysis of part of the mtDNA cytochrome b gene from 26 surface and nine cave A. fasciatus populations revealed seven major clades, which, in principle, represent geographical patterns of distribution. However, the four strongly eye and pigment reduced cave populations, Piedras, Sabinos, Tinaja, and Curva, form a separate cluster, which is not sister group to the surface populations from the same locality. Similarly the Belizean populations do not cluster with their geographic neighbors from the Yucatan. The analyses indicate that there have been recurrent invasions of surface Astyanax from the south, that were most likely influenced by major climate changes during the Pleistocene. During this period, ancestors of the strongly eye and pigment reduced cave populations were able to survive underground as thermophilic relics when the surface populations became extinct. The high level of genetic divergence among the different clades shows that differing haplotype lineages must have reinvaded the surface waters from the south and/or back-colonized them from residual habitats and also penetrated into the caves. Nested clade analyses show that recurrent gene flow as well as historic processes like past fragmentation and range expansion have influenced current populations of A. fasciatus in Central and North America. Different haplotype clades of the phylogeny are not compatible with the present taxonomy of Astyanax and, therefore, we propose the application of a single systematic unit, called A. fasciatus.  相似文献   
138.
In the marine environment agar degradation is assured by bacteria that contain large agarolytic systems with enzymes acting in various endo- and exo-modes. Agarase A (AgaA) is an endo-glycoside hydrolase of family 16 considered to initiate degradation of agarose. Agaro-oligosaccharide binding at a unique surface binding site (SBS) in AgaA from Zobellia galactanivorans was investigated by computational methods in conjunction with a structure/sequence guided approach of site-directed mutagenesis probed by surface plasmon resonance binding analysis of agaro-oligosaccharides of DP 4-10. The crystal structure has shown that agaro-octaose interacts via H-bonds and aromatic stacking along 7 subsites (L through R) of the SBS in the inactive catalytic nucleophile mutant AgaA-E147S. D271 is centrally located in the extended SBS where it forms H-bonds to galactose and 3,6-anhydrogalactose residues of agaro-octaose at subsites O and P. We propose D271 is a key residue in ligand binding to the SBS. Thus AgaA-E147S/D271A gave slightly decreasing KD values from 625 ± 118 to 468 ± 13 μM for agaro-hexaose, -octaose, and -decaose, which represent 3- to 4-fold reduced affinity compared with AgaA-E147S. Molecular dynamics simulations and interaction analyses of AgaA-E147S/D271A indicated disruption of an extended H-bond network supporting that D271 is critical for the functional SBS. Notably, neither AgaA-E147S/W87A nor AgaA-E147S/W277A, designed to eliminate stacking with galactose residues at subsites O and Q, respectively, were produced in soluble form. W87 and W277 may thus control correct folding and structural integrity of AgaA.  相似文献   
139.
Introduction The paddlefish electrosensory system consists of receptor cells in the skin that sense minute electric fields from their prey, small water fleas. The receptors thereby measure the difference of the voltage at the skin surface against the voltage inside the animal. Due to a high skin impedance, this internal voltage is considered to be relatively fixed. Results We found, however, that this internal voltage can fluctuate. It shows damped oscillations to a single short electric field pulse and changes, with some time delay, according to the previous history of stimulation, and shows resonance at a certain frequency. Conclusions Computer simulations show that these phenomena can be explained by the presence of delayed feedback where the internal voltage is part of the feedback loop.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号