首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13531篇
  免费   1066篇
  国内免费   12篇
  14609篇
  2024年   15篇
  2023年   79篇
  2022年   195篇
  2021年   361篇
  2020年   188篇
  2019年   228篇
  2018年   304篇
  2017年   237篇
  2016年   404篇
  2015年   610篇
  2014年   678篇
  2013年   812篇
  2012年   1122篇
  2011年   1120篇
  2010年   701篇
  2009年   643篇
  2008年   897篇
  2007年   879篇
  2006年   864篇
  2005年   754篇
  2004年   723篇
  2003年   691篇
  2002年   611篇
  2001年   147篇
  2000年   89篇
  1999年   157篇
  1998年   163篇
  1997年   107篇
  1996年   106篇
  1995年   65篇
  1994年   74篇
  1993年   77篇
  1992年   40篇
  1991年   47篇
  1990年   37篇
  1989年   46篇
  1988年   28篇
  1987年   22篇
  1986年   17篇
  1985年   48篇
  1984年   47篇
  1983年   27篇
  1982年   21篇
  1981年   30篇
  1980年   25篇
  1979年   12篇
  1978年   10篇
  1977年   12篇
  1976年   9篇
  1969年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
72.
73.
Successful redirection of endogenous resources into heterologous pathways is a central tenet in the creation of efficient microbial cell factories. This redirection, however, may come at a price of poor biomass accumulation, reduced cofactor regeneration and low recombinant enzyme expression. In this study, we propose a metabolite valve to mitigate these issues by dynamically tuning endogenous processes to balance the demands of cell health and pathway efficiency. A control node of glucose utilization, glucokinase (Glk), was exogenously manipulated through either engineered antisense RNA or an inverting gene circuit. Using these techniques, we were able to directly control glycolytic flux, reducing the specific growth rate of engineered Escherichia coli by up to 50% without altering final biomass accumulation. This modulation was accompanied by successful redirection of glucose into a model pathway leading to an increase in the pathway yield and reduced carbon waste to acetate. This work represents one of the first examples of the dynamic redirection of glucose away from central carbon metabolism and enables the creation of novel, efficient intracellular pathways with glucose used directly as a substrate.  相似文献   
74.
ABSTRACT: BACKGROUND: Influenza is one of the oldest and deadliest infectious diseases known to man. Reassorted strains of the virus pose the greatest risk to both human and animal health and have been associated with all pandemics of the past century, with the possible exception of the 1918 pandemic, resulting in tens of millions of deaths. We have developed and tested new computer algorithms, FluShuffle and FluResort, which enable reassorted viruses to be identified by the most rapid and direct means possible. These algorithms enable reassorted influenza, and other, viruses to be rapidly identified to allow prevention strategies and treatments to be more efficiently implemented. RESULTS: The FluShuffle and FluResort algorithms were tested with both experimental and simulated mass spectra of whole virus digests. Flu Shuffle considers different combinations of viral protein identities that match the mass spectral data using a Gibbs sampling algorithm employing a mixed protein Markov chain Monte Carlo (MCMC) method. Flu Resort utilizes those identities to calculate the weighted distance of each across two or more different phylogenetic trees constructed through viral protein sequence alignments. Each weighted mean distance value is normalized by conversion to a Z-score to establish a reassorted strain. CONCLUSIONS: The new Flu Shuffle and Flu Resort algorithms can correctly identify the origins of influenza viral proteins and the number of reassortment events required to produce the strains from the high resolution mass spectral data of whole virus proteolytic digestions. This has been demonstrated in the case of constructed vaccine strains as well as common human seasonal strains of the virus. The algorithms significantly improve the capability of the proteotyping approach to identify reassorted viruses that pose the greatest pandemic risk.  相似文献   
75.
76.
Knowledge of a dolphin's body mass is central to establishing body condition, comparing across individuals, and designing successful management programs. In the present study, sex‐specific prediction equations for estimating body mass were generated from morphometrics (i.e., length and girth) and ages of bottlenose dolphins residing under professionally managed care. Measurements of wild dolphins in Sarasota Bay, Florida, were used to generate sex‐specific body mass reference ranges. Gompertz growth models were fitted to length measurements and age to compare growth across populations. From the regression analyses, the body mass of managed females (R2 = 0.937), managed males (R2 = 0.953), wild females (R2 = 0.979), and wild males (R2 = 0.972) were predicted with high levels of accuracy. Managed adults had similar or longer asymptotic lengths compared to their wild conspecifics. To apply this information, ZooMorphTrak, a mobile software application, was developed to provide a new resource for management. The “Approximate” feature was designed to approximate body mass based on user inputs of individual morphometrics. The “Management” feature compared a managed dolphin's known body mass with respect to body mass reference ranges generated from wild dolphins. ZooMorphTrak, developed by the Chicago Zoological Society, is available for download at http://itunes.apple.com .  相似文献   
77.
Dense concentrations of juvenile ammonoids were recently discovered in the Upper Cretaceous Mancos Shale of east-central Utah. In this paper, we describe this remarkable fossil occurrence and propose a taphonomic model to explain it. Large accumulations of cephalopods are not uncommon in the stratigraphic record, though concentrations of juveniles are relatively rare. Lithologic, geochemical, and stratigraphic evidence suggest that the unusual fossil occurrence we document here resulted from a combination of factors. We think the cause of these dense concentrations of juvenile ammonoids involves the hypothesized semelparous reproductive strategy of ammonoids, environmentally driven mass mortality, and a peculiar taphonomic phenomenon. In our model, an important role is played by the adverse oceanographic conditions common during the extreme greenhouse global climate regime of the Cretaceous, manifested by the well-known Ocean Anoxic Events around the time when these deposits were formed. The proposed mechanisms responsible for the mass accumulations we report here have operated at other times in Earth history, and may help explain similar occurrences elsewhere in the fossil record.  相似文献   
78.
Glutamine synthetase (GS, E.C. 6.3.1.2) is a ubiquitous and highly compartmentalized enzyme that is critically involved in several metabolic pathways in the brain, including the glutamine-glutamate-GABA cycle and detoxification of ammonia. GS is normally localized to the cytoplasm of most astrocytes, with elevated concentrations of the enzyme being present in perivascular endfeet and in processes close to excitatory synapses. Interestingly, an increasing number of studies have indicated that the expression, distribution, or activity of brain GS is altered in several brain disorders, including Alzheimer’s disease, schizophrenia, depression, suicidality, and mesial temporal lobe epilepsy (MTLE). Although the metabolic and functional sequelae of brain GS perturbations are not fully understood, it is likely that a deficiency in brain GS will have a significant biological impact due to the critical metabolic role of the enzyme. Furthermore, it is possible that restoration of GS in astrocytes lacking the enzyme could constitute a novel and highly specific therapy for these disorders. The goals of this review are to summarize key features of mammalian GS under normal conditions, and discuss the consequences of GS deficiency in brain disorders, specifically MTLE.  相似文献   
79.
Polach KJ  Uhlenbeck OC 《Biochemistry》2002,41(11):3693-3702
Unlike most DEAD/H proteins, the purified Escherichia coli protein DbpA demonstrates high specificity for its 23S rRNA substrate in vitro. Here we describe several assays designed to characterize the interaction of DbpA with its RNA and ATP substrates. Electrophoretic mobility shift assays reveal a sub-nanomolar binding affinity for a 153 nucleotide RNA substrate (R153) derived from the 23S rRNA. High affinity RNA binding requires both hairpin 92 and helix 90, as substrates lacking these structures bind DbpA with lower affinity. AMPPNP inhibition assays and ATP/ADP binding assays provide binding constants for ATP and ADP to DbpA with and without RNA substrates. These data have been used to describe a minimal thermodynamic scheme for the binding of the RNA and ATP substrates to DbpA, which reveals cooperative binding between larger RNAs and ATP with cooperative energies of approximately 1.3 kcal mol(-1). This cooperativity is lost upon removal of helix 89 from R153, suggesting this helix is either the preferred target for DbpA's helicase activity or is a necessary structural element for organization of the target site within R153.  相似文献   
80.
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号