首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2834篇
  免费   281篇
  2021年   30篇
  2020年   26篇
  2019年   28篇
  2018年   37篇
  2017年   23篇
  2016年   55篇
  2015年   88篇
  2014年   100篇
  2013年   111篇
  2012年   128篇
  2011年   155篇
  2010年   85篇
  2009年   70篇
  2008年   121篇
  2007年   108篇
  2006年   107篇
  2005年   115篇
  2004年   116篇
  2003年   116篇
  2002年   95篇
  2001年   81篇
  2000年   78篇
  1999年   72篇
  1998年   42篇
  1997年   29篇
  1996年   26篇
  1995年   32篇
  1994年   27篇
  1993年   24篇
  1992年   68篇
  1991年   54篇
  1990年   54篇
  1989年   49篇
  1988年   44篇
  1987年   44篇
  1986年   46篇
  1985年   46篇
  1984年   39篇
  1983年   36篇
  1982年   25篇
  1980年   26篇
  1979年   29篇
  1978年   26篇
  1977年   34篇
  1974年   28篇
  1973年   32篇
  1972年   29篇
  1971年   23篇
  1970年   19篇
  1969年   24篇
排序方式: 共有3115条查询结果,搜索用时 156 毫秒
101.
102.
Tissue pieces from the caput epididymidis of the rat were incubated in vitro with (35S) methionine to produce radioactive secretory proteins. The radioactive secretory proteins so formed were tested for their ability to bind to washed rat spermatozoa collected from the rete testis and cauda epididymidis, and to rat erythrocytes. The sperm and erythrocytes bound approximately 5% of the total radioactive protein. Binding was protein-specific in that only selected proteins became associated with the cells. Binding was not cell-specific, however, since testicular spermatozoa, caudal spermatozoa, and erythrocytes all bound the same proteins to a similar degree.  相似文献   
103.
104.
A recombinant plasmid, designated pUC1002, was constructed by ligation of a HindIII restriction endonuclease fragment of Escherichia coli chromosomal DNA to vector plasmid pMB9. Strains carrying this plasmid were selected by transformation of an E. coli strain bearing the xyl-7 mutation to a xylose-positive (Xyl+) phenotype. Strains containing pUC1002 produced coordinately elevated levels of D-xylose isomerase and D-xylulose kinase. Under appropriate conditions, the isomerase also efficiently catalyzed the conversion of D-glucose to D-fructose.  相似文献   
105.
106.
107.
The Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is a lysosomal storage disease with autosomal recessive inheritance caused by deficiency of the enzyme arylsulfatase B. Severe, intermediate, and mild forms of the disease have been described. The molecular correlate of the clinical heterogeneity is not known at present. To identify the molecular defect in a patient with the intermediate form of the disease, arylsulfatase B mRNA from his fibroblasts was reverse-transcribed, amplified by the polymerase chain reaction, and subcloned. Three point mutations were detected by DNA sequence analysis, two of which, a silent A to G transition at nucleotide 1191 and a G to A transition at nucleotide 1126 resulting in a methionine for valine 376 substitution, were polymorphisms. A G to T transversion at nucleotide 410 causing a valine for glycine 137 substitution (G137V) was identified as the mutation underlying the Maroteaux-Lamy phenotype of the patient, who was homozygous for the allele. The kinetic parameters of the mutant arylsulfatase B enzyme toward a radiolabeled trisaccharide substrate were normal excluding an alteration of the active site. The G137V mutation did not affect the synthesis but severely reduced the stability of the arylsulfatase B precursor. While the wild type precursor is converted by limited proteolysis in late endosomes or lysosomes to a mature form, the majority of the mutant precursor was degraded presumably in a compartment proximal to the trans Golgi network and only a small amount escaped to the lysosomes accounting for the low residual enzyme activity in fibroblasts of a patient with the juvenile form of the disease.  相似文献   
108.
Allelic polymorphism in TCR loci may play an important role in shaping the T cell repertoire and in disease susceptibility. We have used a combination of antibody and sequence analysis to investigate polymorphism in the murine V alpha 11 family. Two different antibodies have been analyzed that recognize particular V alpha 11 family members of the V alpha b and V alpha d haplotypes. One antibody shows J alpha dependency, suggesting a conformational element to the epitope. Investigation of the anti-V alpha 11 staining pattern on different mouse strains indicates that there is a marked influence of MHC haplotype on V alpha 11 selection and that V alpha 11 is preferentially expressed on CD4+ cells. Sequence analysis of V alpha 11 genes from the V alpha a, V alpha b, and V alpha d haplotypes shows two potential regions for the haplotype-specific epitopes. The relatedness of the different V alpha 11 family members from different haplotypes suggests that the V alpha 11.1/11.2 gene duplication is relatively recent, but that V alpha 11.3 separated much earlier. Differences between V alpha 11.3 and V alpha 11.1/11.2 are concentrated in the putative complementarity determining regions (CDR), whereas differences between alleles are not clearly clustered. However, the V alpha 11.1a and V alpha 11.1d alleles differ from V alpha 11.1b and V alpha 11.2b in CDR1. A V alpha 11.2-expressing anti-cytochrome c T cell has the same V-J junction as a V alpha 11.1-bearing cell with a similar fine specificity, indicating that V alpha 11.1b and V alpha 11.2b do not contribute different Ag specificities.  相似文献   
109.
We have used molecular dynamics simulations to determine the stability in water of a model beta-sheet formed by two alanine dipeptide molecules with two intermolecular hydrogen bonds in the closely spaced antiparallel arrangement. In this paper we describe our computations of the binding free energy of the model sheet and a portion of the free energy surface as a function of a reaction co-ordinate for sheet formation. We used the free energy surface to identify stable conformations along the reaction co-ordinate. To determine whether or not the model sheet with two hydrogen bonds is more stable than a single amide hydrogen bond in water, we compared the results of the present calculations to results from our earlier study of linear hydrogen bond formation between two formamide molecules (the formamide "dimer"). The free energy surfaces for the sheet and formamide dimer each have two minima corresponding to locally stable hydrogen-bonded and solvent-separated configurations. The binding free energies of the model sheet and the formamide dimer are -5.5 and -0.34 kcal/mol, respectively. Thus, the model sheet with two hydrogen bonds is quite stable while the simple amide hydrogen bond is only marginally stable. To understand the relative stabilities of the model sheet and formamide dimer in terms of solute-solute and solute-water interactions, we decomposed the free energy differences between hydrogen-bonded and solvent-separated conformations into energetic and entropic contributions. The changes in the peptide-peptide energy and the entropy are roughly twice as large for the sheet as they are for the formamide dimer. The magnitude of the peptide-water energy difference for the sheet is less than twice (by about 3.5 kcal/mol) that for the formamide dimer, and this accounts for the stability of the sheet. The presence of the side-chains and/or blocking groups apparently prevents the amide groups in the sheet from being solvated as favorably in the separated arrangement as in the formamide dimer, where the amide groups are completely exposed to the solvent.  相似文献   
110.
We have used molecular dynamics simulation methods to study the structure and fluctuations of "native" apomyoglobin in aqueous solution for a period of greater than 0.5 nanosecond. This work was motivated by the recent attempts of Hughson et al. to characterize the structure and motion of both this molecule and the less compact, acid stabilized I stage, using methods of pulsed H/2H exchange. The study of these systems provides new insights into protein folding intermediates and our simulation has yielded a detailed model for structure and fluctuations in apomyoglobin which complements the experimental studies. We find that local (short-time) fluctuations agree well with fluctuations observed for the holoprotein in aqueous solution, as well as results from the crystallographic B-factors. In addition, the structural features we observe for native apomyoglobin are very similar to the holoprotein, in basic agreement with the findings of Hughson et al. By examining larger-scale motions, developing only over timescales in excess of a 100 picoseconds, we are able to identify conformationally "labile" and "non-labile" regions within native apomyoglobin. These regions correspond extremely well to those identified in the nuclear magnetic resonance experiments as unstable and stable "folding subdomains" in the I state of apomyoglobin. Overall we find that helices A, B, E, G and H show the least amount of motion and helices C, D and F move substantially over the timescales examined. The major motions, and the primary difference between the holo and apo structures as we have observed them, are due to the shifting motion of helices C, D and F into the vacant heme cavity. We also find that motions at the interface of helical segments can be large, with one important exception being the chain segment connecting helices G and H. This segment of chain interacts with the conformationally "non-labile" helix A to form a relatively rigid subdomain composed of helices A, G and H. We believe that these findings provide direct support for the suggestion of Hughson et al. that helices A, G and H constitute a compact subdomain that remains in a native-like conformation as the protein begins to unfold in environments of decreasing pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号