首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2450篇
  免费   139篇
  国内免费   1篇
  2590篇
  2021年   18篇
  2019年   25篇
  2018年   22篇
  2017年   22篇
  2016年   39篇
  2015年   41篇
  2014年   57篇
  2013年   101篇
  2012年   129篇
  2011年   129篇
  2010年   84篇
  2009年   76篇
  2008年   121篇
  2007年   147篇
  2006年   117篇
  2005年   111篇
  2004年   95篇
  2003年   103篇
  2002年   84篇
  2001年   47篇
  2000年   34篇
  1999年   41篇
  1998年   31篇
  1997年   28篇
  1996年   23篇
  1995年   16篇
  1994年   16篇
  1993年   22篇
  1992年   23篇
  1991年   15篇
  1990年   16篇
  1989年   21篇
  1988年   29篇
  1987年   16篇
  1986年   20篇
  1985年   20篇
  1984年   26篇
  1983年   18篇
  1982年   16篇
  1980年   20篇
  1979年   20篇
  1978年   19篇
  1977年   15篇
  1976年   13篇
  1973年   17篇
  1968年   14篇
  1937年   14篇
  1935年   13篇
  1934年   18篇
  1931年   13篇
排序方式: 共有2590条查询结果,搜索用时 15 毫秒
101.
The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately related to the process of peroxisome proliferation, revealed a sequence of individual steps including organelle elongation/tubulation, formation of membrane and matrix protein patches segregating distinct proteins from each other, development of membrane constrictions and final membrane fission. Based on the similarities of the processes leading to cargo selection and concentration on Golgi membranes on the one hand and to the formation of peroxisomal protein patches on the other hand, an implication of Arf and COPI in distinct processes of peroxisomal proliferation is hypothesized. Alternatively, peroxisomal Arf/COPI might facilitate the formation of COPI-coated peroxisomal vesicles functioning in cargo transport and retrieval from peroxisomes to the ER. Recent observations suggesting transport of Pex3 and Pex19 during early steps of peroxisome biogenesis from the ER to peroxisomes inevitably propose such a retrieval mechanism, provided the ER to peroxisome pathway is based on transporting vesicles.  相似文献   
102.
We have analyzed proteome dynamics during light-induced development of rice (Oryza sativa) chloroplasts from etioplasts using quantitative two-dimensional gel electrophoresis and tandem mass spectrometry protein identification. In the dark, the etioplast allocates the main proportion of total protein mass to carbohydrate and amino acid metabolism and a surprisingly high number of proteins to the regulation and expression of plastid genes. Chaperones, proteins for photosynthetic energy metabolism, and enzymes of the tetrapyrrole pathway were identified among the most abundant etioplast proteins. The detection of 13 N-terminal acetylated peptides allowed us to map the exact localization of the transit peptide cleavage site, demonstrating good agreement with the prediction for most proteins. Based on the quantitative etioplast proteome map, we examined early light-induced changes during chloroplast development. The transition from heterotrophic metabolism to photosynthesis-supported autotrophic metabolism was already detectable 2 h after illumination and affected most essential metabolic modules. Enzymes in carbohydrate metabolism, photosynthesis, and gene expression were up-regulated, whereas enzymes in amino acid and fatty acid metabolism were significantly decreased in relative abundance. Enzymes involved in nucleotide metabolism, tetrapyrrole biosynthesis, and redox regulation remained unchanged. Phosphoprotein-specific staining at different time points during chloroplast development revealed light-induced phosphorylation of a nuclear-encoded plastid RNA-binding protein, consistent with changes in plastid RNA metabolism. Quantitative information about all identified proteins and their regulation by light is available in plprot, the plastid proteome database (http://www.plprot.ethz.ch).  相似文献   
103.
104.
105.
The interaction between the macrophage and the parasite plays a central role in the continued success of Leishmania infection. The promastigote surface ligand, and its complementary macrophage membrane receptor, involved in attachment and phagocytosis are likely to exert considerable influence over the outcome of a new infection. In this study, we report experiments pertaining to one such parasite membrane protein. Initial examination of promastigote surface proteins by radiolabeling and two-dimensional-polyacrylamide gel electrophoresis revealed an abundant polypeptide with an apparent m.w. of 63,000. Lectin-binding studies indicated that it was a glycoprotein containing mannose, N-acetyl glucosamine, and N-acetyl galactosamine residues. Monospecific antiserum raised against this glycoprotein, gp63, decorated the entire promastigote plasmalemma. Univalent antibody fragments from this antiserum blocked the interaction between promastigotes and macrophages by inhibiting attachment. Anti-gp63-inhibition reduced parasite/macrophage binding to 30 to 35% of the control binding level. Additional evidence of the involvement of gp63 in attachment to macrophages was provided by studies that made use of gp63-containing proteoliposomes. These vesicles were avidly phagocytosed by macrophages. Uptake of the gp63-containing liposomes was suppressed by greater than 90% by both anti-gp63 F(ab) fragments and the oligosaccharide mannan, indicating that their phagocytosis was receptor dependent. These results demonstrate that the abundant glycoprotein gp63 plays an important role in attachment of promastigotes to macrophages, and attachment via this parasite ligand is sufficient to trigger phagocytosis.  相似文献   
106.
107.
108.
109.
The stomatal complex of Zea mays consists of two guard cells with the pore in between them and two flanking subsidiary cells. Both guard cells and subsidiary cells are important elements for stoma physiology because a well-coordinated transmembrane shuttle transport of potassium and chloride ions occurs between these cells during stomatal movement. To shed light upon the corresponding transport systems from subsidiary cells, subsidiary cell protoplasts were enzymatically isolated and in turn, analyzed with the patch-clamp technique. Thereby, two K(+)-selective channel types were identified in the plasma membrane of subsidiary cells. With regard to their voltage-dependent gating behavior, they may act as hyperpolarization-dependent K(+) uptake and depolarization-activated K(+) release channels during stomatal movement. Interestingly, the K(+) channels from subsidiary cells and guard cells similarly responded to membrane voltage as well as to changes in the K(+) gradient. Further, the inward- and outward-rectifying K(+) current amplitude decreased upon a rise in the intracellular free Ca(2+) level from 2 nM to the micro M-range. The results indicate that the plasma membrane of subsidiary cells and guard cells has to be inversely polarized in order to achieve the anti-parallel direction of K(+) fluxes between these cell types during stomatal movement.  相似文献   
110.
Human Vgamma9delta2 T lymphocytes are suggested to play an important role in the immune response to various microbial pathogens. In contrast to alphabeta T cells, gammadelta T lymphocytes recognize small, non-protein, phosphate-bearing antigens (phosphoantigens) in a major histocompatibility complex-independent manner. Four different phosphoantigens termed TUBag1 to TUBag4 with a common 3-formyl-1-butyl-pyrophosphate moiety and isopentenyl-pyrophosphate have been isolated and identified from mycobacteria. However, natural occurring gammadelta T cell ligands from other bacterial species were not characterized so far. Here, we describe the structural identification of the two compounds responsible for the gammadelta T cell-stimulating capacity of Escherichia coli as similar to the mycobacterial phosphoantigens 3-formyl-1-butyl-pyrophosphate and its M(r) 275 homologue TUBag2. In addition, E. coli phosphoantigens exert bioactivities on gammadelta T cells with similar potencies to the mycobacterial phosphoantigens at 5-15 nm concentration. Furthermore, our results clearly prove that the deoxyxylulose 5-phophate pathway (also referred to as Rohmer metabolic route of isoprenoid biosynthesis) is essential for the biosynthesis of the phosphoantigens in E. coli. Because this pathway is absent from human cells, it proves an ideal target for focusing efficiently the antimicrobial selectivity of human gammadelta T lymphocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号