首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2517篇
  免费   145篇
  国内免费   1篇
  2021年   18篇
  2019年   27篇
  2018年   23篇
  2017年   23篇
  2016年   41篇
  2015年   43篇
  2014年   60篇
  2013年   104篇
  2012年   131篇
  2011年   130篇
  2010年   86篇
  2009年   76篇
  2008年   122篇
  2007年   148篇
  2006年   118篇
  2005年   113篇
  2004年   98篇
  2003年   101篇
  2002年   86篇
  2001年   49篇
  2000年   38篇
  1999年   41篇
  1998年   31篇
  1997年   28篇
  1996年   23篇
  1995年   16篇
  1994年   16篇
  1993年   22篇
  1992年   26篇
  1991年   19篇
  1990年   16篇
  1989年   22篇
  1988年   29篇
  1987年   16篇
  1986年   22篇
  1985年   21篇
  1984年   27篇
  1983年   18篇
  1982年   16篇
  1981年   15篇
  1980年   20篇
  1979年   21篇
  1978年   19篇
  1977年   15篇
  1976年   17篇
  1973年   17篇
  1968年   16篇
  1937年   15篇
  1934年   18篇
  1931年   13篇
排序方式: 共有2663条查询结果,搜索用时 15 毫秒
121.
Podocytes possess major processes containing microtubules (MTs) and intermediate filaments and foot processes containing actin filaments (AFs) as core cytoskeletal elements. Although the importance of these cytoskeletal elements for maintaining podocyte processes was previously shown, so far no data are available concerning the developmental regulation of podocyte process formation. A conditionally immortalized mouse podocyte cell line, which can be induced to develop processes similar to those found in vivo, was treated with various reagents to disrupt cytoskeletal elements or to inhibit protein phosphatases. MTs colocalized with vimentin intermediate filaments but not with AFs. After AF disassembly, major processes were maintained, whereas after depolymerization of MTs, podocytes lost their processes, rounded up, and maintained only actin-based peripheral projections. Suppression of MT elongation by nanomolar vinblastine or inhibition of serine/threonine phosphatase PP2A with okadaic acid abolished process formation. PP2A was expressed in undifferentiated but not in differentiated podocytes. One- and two-dimensional western blot analyses revealed a dose-dependent increase in serine/threonine phosphorylation after okadaic acid treatment. Hence, morphogenetic activity of MTs induces podocyte process formation via serine/threonine protein dephosphorylation by PP2A. These results may open new avenues for understanding the signaling mechanism underlying podocyte cytoskeleton alterations during development and in glomerular diseases.  相似文献   
122.
This study evaluates the action of the new ruthenium complexes trans-RuCl(2)(nic)(4)] (I) and trans-[RuCl(2)(i-nic)(4)] (II) as free radical scavengers. In our experiments, both compounds acted as scavengers of superoxide anion (O(2)*(-)), hydroxyl radicals (HO*) and nitrogen monoxide (formally known as 'nitric oxide'; NO*). In addition, complexes I and II potentiated the release of NO* from S-nitroso-N-acetyl-DL-penicilamine (SNAP), a NO* donor. Complex II, but not I, also decreased the nitrite levels in culture media of activated macrophages. A hypsochromic shift of lambda(max) and a significant change in half-wave potential (E(1/2)) was observed when NO* was added to the Complex II. Thiobarbituric reactive substance (TBARS) levels were significantly reduced in rats treated for 1 week with Complex II plus tert-butylhydroperoxide, when compared to rats treated only with tert-butylhydroperoxide. None of the complexes showed cytotoxicity. These findings support the suggestion that the new ruthenium complexes, especially trans-[RuCl(2)(i-nic)(4)] or its derivatives, might provide potential therapeutic benefits in disorders where reactive nitrogen (RNS) or oxygen (ROS) species are involved.  相似文献   
123.
Urokinase-type plasminogen activator (uPA) represents a central molecule in pericellular proteolysis and is implicated in a variety of physiological and pathophysiological processes such as tissue remodelling, wound healing, tumor invasion, and metastasis. uPA binds with high affinity to a specific cell surface receptor, uPAR (CD87), via a well defined sequence within the N-terminal region of uPA (uPA19-31). This interaction directs the proteolytic activity of uPA to the cell surface which represents an important step in tumor cell proliferation, invasion, and metastasis. Due to its fundamental role in these processes, the uPA/uPAR-system has emerged as a novel target for tumor therapy. Previously, we have identified a synthetic, cyclic, uPA-derived peptide, cyclo19,31uPA19-31, as a lead structure for the development of low molecular weight uPA-analogues, capable of blocking uPA/uPAR-interaction [Burgle et al., Biol. Chem. 378 (1997), 231-237]. We now searched for peptide variants of cyclo19,31uPA19-31 with elevated affinities for uPAR binding. Among other tasks, we performed a systematic D-amino acid scan of uPA19-31, in which each of the 13 L-amino acids was individually substituted by the corresponding D-amino acid. This led to the identification of cyclo19,31[D-Cys19]-uPA19-31 as a potent inhibitor of uPA/uPAR-interaction, displaying only a 20 to 40-fold lower binding capacity as compared to the naturally occurring uPAR-ligands uPA and its amino-terminal fragment. Cyclo19,31[D-Cys19]-uPA19-31 not only blocks binding of uPA to uPAR but is also capable of efficiently displacing uPAR-bound uPA from the cell surface and to inhibit uPA-mediated, tumor cell-associated plasminogen activation and fibrin degradation. Thus, cyclo19,31[D-Cys19]-uPA19-31 represents a promising therapeutic agent to significantly affect the tumor-associated uPA/uPAR-system.  相似文献   
124.
The abundance of heterotrophic bacteria and viruses, as well as rates of viral production and virus-mediated mortality, were measured in Discovery Passage and the Strait of Georgia (British Columbia, Canada) along a gradient of tidal mixing ranging from well mixed to stratified. The abundances of bacteria and viruses were approximately 10(6) and 10(7) mL(-1), respectively, independent of mixing regime. Viral production estimates, monitored by a dilution technique, demonstrated that new viruses were produced at rates of 10(6) and 10(7) mL(-1)h(-1) across the different mixing regimes. Using an estimated burst size of 50 viruses per lytic event, ca. 19 to 27% of the standing stock of bacteria at the stratified stations and 46 to 137% at the deep-mixed stations were removed by viruses. The results suggest that mixing of stratified waters during tidal exchange enhances virus-mediated bacterial lysis. Consequently, viral lysis recycled a greater proportion of the organic carbon required for bacterial growth under non-steady-state compared to steady-state conditions.  相似文献   
125.
126.
127.
128.
We reported recently that regulation by intracellular pH (pH(i)) of the murine Cl-/HCO(3)(-) exchanger AE2 requires amino acid residues 310-347 of the polypeptide's NH(2)-terminal cytoplasmic domain. We have now identified individual amino acid residues within this region whose integrity is required for regulation of AE2 by pH. 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during variation of extracellular pH (pH(o)) with unclamped or clamped pH(i), or during variation of pH(i) at constant pH(o). Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited by acid pH(o), with a value of pH(o50) = 6.87 +/- 0.05, and was stimulated up to 10-fold by the intracellular alkalinization produced by bath removal of the preequilibrated weak acid, butyrate. Systematic hexa-alanine [(A)6]bloc substitutions between aa 312-347 identified the greatest acid shift in pH(o(50)) value, approximately 0.8 pH units in the mutant (A)6 342-347, but only a modest acid-shift in the mutant (A)6 336-341. Two of the six (A)6 mutants retained normal pH(i) sensitivity of 36Cl- efflux, whereas the (A)6 mutants 318-323, 336-341, and 342-347 were not stimulated by intracellular alkalinization. We further evaluated the highly conserved region between aa 336-347 by alanine scan and other mutagenesis of single residues. Significant changes in AE2 sensitivity to pH(o) and to pH(i) were found independently and in concert. The E346A mutation acid-shifted the pH(o(0) value to the same extent whether pH(i) was unclamped or held constant during variation of pH(o). Alanine substitution of the corresponding glutamate residues in the cytoplasmic domains of related AE anion exchanger polypeptides confirmed the general importance of these residues in regulation of anion exchange by pH. Conserved, individual amino acid residues of the AE2 cytoplasmic domain contribute to independent regulation of anion exchange activity by pH(o) as well as pH(i).  相似文献   
129.
The stomatal complex of Zea mays consists of two guard cells with the pore in between them and two flanking subsidiary cells. Both guard cells and subsidiary cells are important elements for stoma physiology because a well-coordinated transmembrane shuttle transport of potassium and chloride ions occurs between these cells during stomatal movement. To shed light upon the corresponding transport systems from subsidiary cells, subsidiary cell protoplasts were enzymatically isolated and in turn, analyzed with the patch-clamp technique. Thereby, two K(+)-selective channel types were identified in the plasma membrane of subsidiary cells. With regard to their voltage-dependent gating behavior, they may act as hyperpolarization-dependent K(+) uptake and depolarization-activated K(+) release channels during stomatal movement. Interestingly, the K(+) channels from subsidiary cells and guard cells similarly responded to membrane voltage as well as to changes in the K(+) gradient. Further, the inward- and outward-rectifying K(+) current amplitude decreased upon a rise in the intracellular free Ca(2+) level from 2 nM to the micro M-range. The results indicate that the plasma membrane of subsidiary cells and guard cells has to be inversely polarized in order to achieve the anti-parallel direction of K(+) fluxes between these cell types during stomatal movement.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号