全文获取类型
收费全文 | 8867篇 |
免费 | 601篇 |
国内免费 | 1篇 |
专业分类
9469篇 |
出版年
2019年 | 52篇 |
2018年 | 101篇 |
2017年 | 108篇 |
2016年 | 176篇 |
2015年 | 264篇 |
2014年 | 330篇 |
2013年 | 378篇 |
2012年 | 509篇 |
2011年 | 526篇 |
2010年 | 337篇 |
2009年 | 250篇 |
2008年 | 424篇 |
2007年 | 429篇 |
2006年 | 375篇 |
2005年 | 382篇 |
2004年 | 348篇 |
2003年 | 324篇 |
2002年 | 312篇 |
2001年 | 249篇 |
2000年 | 295篇 |
1999年 | 213篇 |
1998年 | 97篇 |
1997年 | 75篇 |
1996年 | 83篇 |
1995年 | 64篇 |
1994年 | 68篇 |
1993年 | 64篇 |
1992年 | 137篇 |
1991年 | 136篇 |
1990年 | 130篇 |
1989年 | 90篇 |
1988年 | 131篇 |
1987年 | 99篇 |
1986年 | 96篇 |
1985年 | 102篇 |
1984年 | 102篇 |
1983年 | 74篇 |
1982年 | 70篇 |
1981年 | 60篇 |
1980年 | 57篇 |
1979年 | 89篇 |
1978年 | 58篇 |
1977年 | 69篇 |
1976年 | 45篇 |
1975年 | 57篇 |
1974年 | 48篇 |
1973年 | 63篇 |
1972年 | 48篇 |
1971年 | 53篇 |
1968年 | 49篇 |
排序方式: 共有9469条查询结果,搜索用时 19 毫秒
71.
72.
Cost of resistance and tolerance under competition: the defense-stress benefit hypothesis 总被引:4,自引:0,他引:4
David H. Siemens Heike Lischke Nicole Maggiulli Stéphanie Schürch Bitty A. Roy 《Evolutionary ecology》2003,17(3):247-263
Defense costs provide a major explanation for why plants in nature have not evolved to be better defended against pathogens and herbivores; however, evidence for defense costs is often lacking. Plants defend by deploying resistance traits that reduce damage, and tolerance traits that reduce the fitness effects of damage. We first tested the defense-stress cost (DSC) hypothesis that costs of defenses increase and become important under competitive stress. In a greenhouse experiment, uniparental maternal families of the host plant Arabis perennans were grown in the presence and absence of the bunch grass Bouteloua gracilis and the herbivore Plutella xylostella. Costs of resistance and tolerance manifest as reduced growth in the absence of herbivory were significant when A. perennans grew alone, but not in the competitive environment, in contrast to the DSC hypothesis. We then tested the defense-stress benefit (DSB) hypothesis that plant defenses may benefit plants in competitive situations thereby reducing net costs. For example, chemical resistance agents and tolerance may also have functions in competitive interactions. To test the DSB hypothesis, we compared differentially competitive populations for defense costs, assuming that poorer competitors from less dense habitats were less likely to have evolved defenses that also function in competition. Without competitive benefits of defenses, poorer competitors were expected to have higher net costs of defenses under competition in accordance with DSB. Populations of A. perennans and A. drummondii that differed dramatically in competitiveness were compared for costs, and as the DSB hypothesis predicts, only the poor competitor population showed costs of resistance under competition. However, cost of tolerance under competition did not differ among populations, suggesting that the poor competitors might have evolved a general stress tolerance. Although the DSC hypothesis may explain cases where defense costs increase under stress, the DSB hypothesis may explain some cases where costs decrease under competitive stress. 相似文献
73.
Clinical observations have suggested a relationship between osteoarthritis and a changed estrogen metabolism in menopausal women. Phytoestrogens have been shown to ameliorate various menopausal symptoms. Proteoglycans (PG) consisting of low and high sulfated glycosaminoglycans (GAG) are the main components of articular cartilage matrix, and their synthesis is increased by insulin in growth plate cartilage. We have investigated whether GAG synthesis and sodium [35S]sulfate incorporation in female bovine articular chondrocytes are affected by daidzein, genistein, and/or insulin. For comparative purposes, estradiol incubations were performed. Articular chondrocytes were cultured in monolayers at 5% O2 and 5% CO2 in medium containing serum for 7 days followed by the addition of 10(-11) M-10(-4) M daidzein, genistein, 17beta-estradiol, or 5 microg/ml insulin in a serum-free culture phase of 2 days. Photometrically analyzed GAG synthesis was significantly suppressed by high doses (10(-5) M-10(-4) M) of daidzein, genistein, and 17beta-estradiol. Although insulin raised the sodium [35S]sulfate uptake significantly, different concentrations of daidzein, genistein, or 17beta-estradiol showed no significant effects. However, the stimulating effect of insulin on sulfate incorporation was enhanced significantly after preincubation of cells with 10(-11) M-10(-5) M daidzein or 10(-9) M-10(-5) M genistein but not by 17beta-estradiol. In view of the risks of long-term estrogen replacement therapy, further experiments should clarify the potential benefit of phytoestrogens and insulin in articular cartilage metabolism. 相似文献
74.
A process for the continuous fermentation of the genetically modified, nitrogenase-producing Escherichia coli C-M74 (pUS1)-strain has been developed. This strain, which is able to fix molecular nitrogen, has the nifgenes of the bacterium Klebsiella pneumoniae. Cell growth and nitrogenase activity of the enzyme have been optimized both in batch and continuous fermentations. For the fermentations, trial runs were performed by cultivating the E. coli cells in 50-ml culture bottles. The medium composition was varied in order to provide high biomass production and nitrogenase activity. For an effective fermentation control, an on-line analysis was built up for the substrates ammonium and glucose. Other medium components such as ampicillin, citric acid, acetic acid, nitrogenase activity, and protein were measured by using different off-line methods. Modern optical methods like in-line microfluorometry for monitoring the culture fluorescence and laser flow cytometry for the estimation of DNA and protein content were also employed. Plasmid stability was also determined. 相似文献
75.
Kipriyanov SM Cochlovius B Schäfer HJ Moldenhauer G Bähre A Le Gall F Knackmuss S Little M 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(1):137-144
To target NK cells against non-Hodgkin's lymphoma, we constructed a bispecific diabody (BsDb) with reactivity against both human CD19 and FcgammaRIII (CD16). Bacterially produced CD19 x CD16 BsDb specifically interacted with both CD19(+) and CD16(+) cells and exhibited significantly higher apparent affinity and slower dissociation from the tumor cells than from effector cells. It was able to induce specific lysis of tumor cells in the presence of isolated human NK cells or nonfractionated PBLs. The combination of the CD19 x CD16 BsDb with a previously described CD19 x CD3 BsDb and CD28 costimulation significantly increased the lytic potential of human PBLs. Treatment of SCID mice bearing an established Burkitt's lymphoma (5 mm in diameter) with human PBLs, CD19 x CD16 BsDb, CD19 x CD3 BsDb, and anti-CD28 mAb resulted in the complete elimination of tumors in 80% of animals. In contrast, mice receiving human PBLs in combination with either diabody alone showed only partial tumor regression. These data clearly demonstrate the synergistic effect of small recombinant bispecific molecules recruiting different populations of human effector cells to the same tumor target. 相似文献
76.
Dictyostelium discoideum DdRacGap1 (DRG) contains both Rho-GEF and Rho-GAP domains, a feature it shares with mammalian Bcr and Abr. To elucidate the physiological role of this multifunctional protein, we characterized the enzymatic activity of recombinant DRG fragments in vitro, created DRG-null cells, and studied the function of the protein in vivo by analysing the phenotypic changes displayed by DRG-depleted cells and DRG-null cells complemented with DRG or DRG fragments. Our results show that DRG-GEF modulates F-actin dynamics and cAMP-induced F-actin formation via Rac1-dependent signalling pathways. DRG's RacE-GAP activity is required for proper cytokinesis to occur. Additionally, we provide evidence that the specificity of DRG is not limited to members of the Rho family of small GTPases. A recombinant DRG-GAP accelerates the GTP hydrolysis of RabD 30-fold in vitro and our complementation studies show that DRG-GAP activity is required for the RabD-dependent regulation of the contractile vacuole system in Dictyostelium. 相似文献
77.
Development and validation of a bioreactor for physical stimulation of engineered cartilage 总被引:1,自引:0,他引:1
A bioreactor has been developed to apply different regimes of physical stimulation to tissue specimens under highly controlled conditions. The computer-controlled device exposes specimens to compressive deformation at various strains and frequencies, measures the load applied to each sample and allows simultaneous medium stirring at different velocities. Validation tests confirmed the accuracy of the system in (i) its displacement (errors averaged 0.072+/-0.051 microm), and in (ii) setting the contact with the samples utilizing micrometer screws coupled to plungers (errors averaged 1.74+/-0.36% for samples of 1.60-3.18 mm thickness), thus ensuring accurate compressive deformation. The developed bioreactor, which represents an advance in the technology for physical stimulation of tissue specimens, is currently used to apply compressive deformation and hydrodynamic forces to human chondrocytes cultured in biodegradable polymer scaffolds, with the goals of (i) engineering functional grafts for the repair of cartilage defects (ii). 相似文献
78.
79.
Bayindir U Alfermann AW Fuss E 《The Plant journal : for cell and molecular biology》2008,55(5):810-820
Due to their peculiar stereochemistry and numerous biological activities, lignans are of widespread interest. As only a few biosynthetic steps have been clarified to date, we aimed to further resolve the molecular basis of lignan biosynthesis. To this end, we first established that the biologically active lignan (−)-hinokinin could be isolated from in vitro cultures of Linum corymbulosum. Two hypothetical pathways were outlined for the biosynthesis of (−)-hinokinin. In both pathways, (+)-pinoresinol serves as the primary substrate. In the first pathway, pinoresinol is reduced via lariciresinol to secoisolariciresinol by a pinoresinol–lariciresinol reductase, and methylenedioxy bridges are formed later. In the second pathway, pinoresinol itself is the substrate for formation of the methylenedioxy bridges, resulting in consecutive production of piperitol and sesamin. To determine which of the proposed hypothetical pathways acts in vivo , we first isolated several cDNAs encoding one pinoresinol-lariciresinol reductase ( PLR-Lc1 ), two phenylcoumaran benzylic ether reductases ( PCBER-Lc1 and PCBER-Lc2 ), and two PCBER-like proteins from a cDNA library of L. corymbulosum. PLR-Lc1 was found to be enantiospecific for the conversion of (+)-pinoresinol to (−)-secoisolariciresinol, which can be further converted to give (−)-hinokinin. Hairy root lines with significantly reduced expression levels of the plr-Lc1 gene were established using RNAi technology. Hinokinin accumulation was reduced to non-detectable levels in these lines. Our results strongly indicate that PLR-Lc1 participates in (−)-hinokinin biosynthesis in L. corymbulosum by the first of the two hypothetical pathways via (−)-secoisolariciresinol. 相似文献
80.
In this combined MD simulation and DFT study, interactions of the wild-type (WT) amyloid precursor protein (APP) and its Swedish variant (SW), Lys670 → Asn and Met671 → Leu, with the beta-secretase (BACE1) enzyme and their cleavage mechanisms have been investigated. BACE1 catalyzes the rate-limiting step in the generation of 40-42 amino acid long Alzheimer amyloid beta (Aβ) peptides. All key structural parameters such as position of the flap, volume of the active site, electrostatic binding energy, structures, and positions of the inserts A, D, and F and 10s loop obtained from the MD simulations show that, in comparison to the WT-substrate, BACE1 exhibits greater affinity for the SW-substrate and orients it in a more reactive conformation. The enzyme-substrate models derived from the MD simulations were further utilized to investigate the general acid/base mechanism used by BACE1 to hydrolytically cleave these substrates. This mechanism proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. For the WT-substrate, the overall barrier of 22.4 kcal/mol for formation of the gem-diol intermediate is 3.3 kcal/mol higher than for the SW-substrate (19.1 kcal/mol). This process is found to be the rate-limiting in the entire mechanism. The computed barrier is in agreement with the measured barrier of ca. 18.00 kcal/mol for the WT-substrate and supports the experimental observation that the cleavage of the SW-substrate is 60 times more efficient than the WT-substrate. 相似文献