首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10705篇
  免费   1008篇
  国内免费   3篇
  2021年   88篇
  2019年   82篇
  2018年   104篇
  2017年   98篇
  2016年   144篇
  2015年   256篇
  2014年   319篇
  2013年   416篇
  2012年   494篇
  2011年   468篇
  2010年   334篇
  2009年   284篇
  2008年   443篇
  2007年   526篇
  2006年   441篇
  2005年   508篇
  2004年   465篇
  2003年   495篇
  2002年   425篇
  2001年   183篇
  2000年   143篇
  1999年   166篇
  1998年   151篇
  1997年   126篇
  1996年   118篇
  1995年   131篇
  1994年   110篇
  1993年   107篇
  1992年   137篇
  1991年   134篇
  1990年   119篇
  1989年   119篇
  1988年   110篇
  1987年   130篇
  1986年   119篇
  1985年   139篇
  1984年   153篇
  1983年   105篇
  1982年   130篇
  1981年   159篇
  1980年   129篇
  1979年   117篇
  1978年   138篇
  1977年   125篇
  1976年   125篇
  1975年   87篇
  1974年   114篇
  1973年   100篇
  1972年   81篇
  1970年   93篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Summary We have examined the persistence of midbody channels during the second, third, and fourth cleavage cycles of the mouse using immunofluorescence to map the distribution of midbody microtubule bundles in intact embryos. Electron microscopy showed these bundles to be a characteristic feature of midbodies throughout the interphase period. In recently-divided embryos at each cleavage stage the number of midbodies was half the number of blastomeres, and declined towards zero as the next cleavage approached. This indicated to us that the only midbodies present in each stage were those which had arisen in the immediately-preceding division. Of those blastomeres which were in mitosis at the time of fixation, less than 4% were connected via a midbody to another blastomere, demonstrating that persistence of midbodies beyond a single cleavage cycle is a rare event. We conclude that midbody channels in our embryos are likely to connect only pairs of sister blastomeres because midbodies do not persist through multiple cleavage cycles. Midbody channels cannot, therefore, be regarded as providing extensive cell coupling in advance of the onset of gap junctional communication.  相似文献   
92.
93.
Rhodanese has been utilized as a model enzyme for the study of protein structure-function relationships. The enzyme has recently been cloned and the recombinant enzyme is now available for investigation. However, prior to use in structure-function studies, the recombinant enzyme must be shown to have the same structure and activity as the bovine liver enzyme used in the previous studies. An immunological study of the conformations of these enzyme conformers is described. Three antibodies (two monoclonal and one polyclonal, site-directed antibody) were shown to detect distinct and nonoverlapping epitopes. The epitopes of the monoclonal antirhodanese antibodies (R207 and MAB11) were mapped to the same CNBr digest fragment of the amino terminal domain of rhodanese, and the epitope of the site-directed antibody prepared against the interdomain tether sequence of rhodanese (PAT-T1) was mapped to that region of rhodanese (residues 142–156). The rhodanese conformers were studied by monitoring the accessibility of the epitopes recognized by each antibody in each conformer using an indirect ELISA. None of the antibodies could detect its epitope on the purified liver enzyme. Two of the antibodies (R207 and PAT-T1) could also not detect their epitopes on the recombinant enzyme. However, MAB11 did detect a conformational difference between the natural and recombinant rhodanese conformers, indicating the conformational difference is localized in the first 73 amino acids of rhodanese. This difference presumably reflects the difference in the histories of the two enzymes and may be due to differences in enzyme folding, differences in the purification procedures, and differences in storage conditions—all of which could influence the final conformation of the enzyme.  相似文献   
94.
Phenotypes of the cells developing into small colonies after days of primary culture of adult rat hepatocytes in serum-free modified Dulbecco Modified Eagles’ medium containing 10 mM nicotinamide and 10 ng/ml epidermal growth factor were analyzed immunocytochemically, cytochemically and ultrastructurally. Albumin, cytokeratin 8 and 18 were seen by immunocytochemical techniques in the cells of the small colonies at Day 6. Transferrin, α-antitrypsin, ceruloplasmin, and haptoglobin, proteins secreted by mature hepatocytes, were faintly stained in these cells as was α-fetoprotein. These proteins were secreted into the culture medium as evidenced by immunoblot analysis. γ-Glutamyltransferase, alkaline phosphatase and glucose 6-phosphatase were not present in the cells of the small colonies as well as the surrounding hepatocytes at Day 6 of culture. In addition, ultrastructural examinations of the cells in the small colonies indicated that these cells not only had many characteristic mitochondria and desmosomes, but also a few small peroxisomes. Such cells, even after 20 days in culture were proliferating, as evidenced by the intranuclear presence of the proliferating cell nuclear antigen. The potential relation of these cells to hepatocytes which may serve as the principal reserve for replicating hepatocytes is discussed.  相似文献   
95.
Sleep related breathing disorders are of high prevalence and are often associated with essential hypertension. It is therefore necessary to study blood pressure continuously in all patients with sleep related breathing disorders and arterial hypertension as well as in all patients with essential hypertension and suspected sleep apnoea. To investigate the usefulness of a non-invasive continuous volume-clamp method during sleep we used this technique in parallel with 130 sleep recordings and performed a validation study of the Finapres instrument on a subgroup where continuous invasive blood pressure recordings were available. Absolute pressure values of Finapres are valid when the position and the movement of the sensor were carefully observed and only appropriate segments of the recordings were taken for further evaluation. The high beat to beat resolution of the systolic and diastolic pressure is the main advantage of this non-invasive technique because it reflects rapid blood pressure variations as they occur in sleep related breathing disorders. This could be investigated only invasively until now.  相似文献   
96.
Biologic markers in ethylene oxide-exposed workers and controls   总被引:2,自引:0,他引:2  
Ethylene oxide (EtO) is an alkylating agent and a model direct-acting mutagen and carcinogen. This study has evaluated a panel of biologic markers including EtO-hemoglobin adducts (EtO-Hb), sister-chromatid exchanges (SCEs), micronuclei, chromosomal aberrations (CAs), DNA single-strand breaks (SSB) and an index of DNA repair (ratio of UDS to NA-AAF-DNA binding) in the peripheral blood cells of 34 workers at a sterilization unit of a large university hospital and 23 controls working in the university library. Comprehensive environmental histories were obtained on each subject including detailed occupational and smoking histories. Industrial hygiene data obtained prior to the study and personal monitoring during the 8 years preceding the study showed that workers were subject to low-level exposure near or below the current Occupational Safety and Health Administration (OSHA) standard of 1 ppm (TWA). Personal monitoring data obtained during 2 weeks prior to blood sampling were uniformly less than 0.3 ppm (TWA). After adjusting for smoking, EtO workplace exposure was significantly (p less than 0.001) associated with EtO-Hb (a carcinogen-protein adduct) and 2 measures of SCEs [the average number of SCEs/cell (SCE50) and the number of high frequency cells (SCEHFC)]. There was an apparent suppression of DNA repair capacity in EtO-exposed individuals as measured by the DNA repair index; i.e., the ratio of unscheduled DNA synthesis (UDS) and NA-AAF-DNA binding (p less than 0.01). No association of DNA repair index with smoking was found. Another important finding of this study is the highly significant correlation between EtO-Hb adduct levels and SCEHFC (p less than 0.01) and SCEs (p less than 0.02) which provides evidence of a direct link between a marker of biologically effective dose and markers of genotoxic response. In contrast, micronuclei, CAs and SSBs were not significantly elevated in the workers. The activity of the u-isoenzyme of glutathione-S-transferase (GT) was measured as a possible genetic marker of susceptibility and a modulator of biomarker formation. However, possibly because of confounding by age, no significant relationships were found between GT and any of the exposure-related markers by ANOVA or among other independent variables by regression. This study demonstrates significant effects of low-level EtO exposure, independent of smoking history, near or below 1 ppm on multiple biomarkers and suggests that the current OSHA standard may not be adequately protective. Previously described effects of smoking on EtO-Hb adducts, SCEs and SCEHFC were also seen in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
97.
To understand better the biophysical mechanism of neutral filter elution (pH 9.6), we eluted genomes of known size and shape: coliphage T4c (Mr 1.15 x 10(8), E. coli (Mr 2.7 x 10(9)), and Chinese hamster lung fibroblasts (V79, Mr 2-4 x 10(10)). DNA eluted through 15% sucrose atop the filter in a biphasic pattern. The elution rate of the initial component correlated (r greater than 0.97) exponentially with 1/Mr for monodisperse samples of DNA eluted through pore sizes 0.1-3.0 microns. Using this relationship between elution rate and Mr, we estimated Mn of polydisperse, X-irradiated (253 Gy) samples of DNA from E. coli or V79 cells to be 3.15 +/- 1.46 and 1.42 +/- 0.33, respectively, compared to expected values of 2.93 and 3.52 (10(8) Da). The best predictor of elution rate for DNA from T4c and intact and X-irradiated V79 cells was pore density, and pore diameter for DNA from X-irradiated E. coli. The rate of elution of DNA from unirradiated E. coli was unrelated to pore density or diameter. While the mechanism of neutral filter elution remains unknown, its use for linear DNAs with Mn ca. 10(8) Da appears to be valid quantitatively.  相似文献   
98.
Cellulose biosynthesis and function in bacteria.   总被引:66,自引:1,他引:65       下载免费PDF全文
The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.  相似文献   
99.
In some dioecious plant species, mates and/or females have large and presumably costly opposite-sex structures that are sterile. This is termed 'cryptic dioecy'. Several new cases of cryptic dioecy have recently been studied. They may give information about the minimal requirements for the evolution of separate sexes from hermaphroditism, because the most important differences contributing to the initial advantage of the breeding system have not been obscured by further developments. Reviewed in this light, cryptic dioecy can provide evidence on the role of reallocation of reproductive resources in the evolution of dioecy.  相似文献   
100.
Glycosylation     
Protein glycosylation is more abundant and structurally diverse than all other types of post-translational modifications combined. Protein-bound saccharides range from dynamic monosaccharides on nuclear and cytoplasmic proteins, to enormously complex 'recognition' molecules on extracellular N- or O-linked glycoproteins or proteoglycans. Recent elucidation of a few of the myriad functions of these saccharides has finally opened a crack in the door to one the last great frontiers of biochemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号