首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1672篇
  免费   126篇
  国内免费   1篇
  2023年   11篇
  2022年   12篇
  2021年   18篇
  2020年   28篇
  2019年   28篇
  2018年   28篇
  2017年   28篇
  2016年   27篇
  2015年   55篇
  2014年   70篇
  2013年   88篇
  2012年   106篇
  2011年   73篇
  2010年   71篇
  2009年   63篇
  2008年   71篇
  2007年   73篇
  2006年   78篇
  2005年   71篇
  2004年   85篇
  2003年   87篇
  2002年   68篇
  2001年   31篇
  2000年   32篇
  1999年   24篇
  1998年   22篇
  1997年   16篇
  1996年   15篇
  1995年   20篇
  1994年   14篇
  1993年   15篇
  1992年   25篇
  1991年   15篇
  1990年   16篇
  1989年   21篇
  1988年   16篇
  1987年   14篇
  1986年   14篇
  1985年   19篇
  1984年   17篇
  1983年   13篇
  1982年   13篇
  1981年   19篇
  1979年   22篇
  1978年   12篇
  1977年   13篇
  1976年   16篇
  1974年   14篇
  1973年   9篇
  1970年   9篇
排序方式: 共有1799条查询结果,搜索用时 78 毫秒
81.
82.
Ibogaine and other ibogan type alkaloids present anti‐addictive effects against several drugs of abuse and occur in different species of the Apocynaceae family. In this work, we used gas chromatography‐mass spectrometry (GC/MS) and principal component analysis (PCA) in order to compare the alkaloid profiles of the root and stem barks of four Mexican Tabernaemontana species with the root bark of the entheogenic African shrub Tabernanthe iboga. PCA demonstrated that separation between species could be attributed to quantitative differences of the major alkaloids, coronaridine, ibogamine, voacangine, and ibogaine. While T. iboga mainly presented high concentrations of ibogaine, Tabernaemontana samples either showed a predominance of voacangine and ibogaine, or coronaridine and ibogamine, respectively. The results illustrate the phytochemical proximity between both genera and confirm previous suggestions that Mexican Tabernaemontana species are viable sources of anti‐addictive compounds.  相似文献   
83.
84.
Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.  相似文献   
85.
Glycogen synthase kinase-3 (GSK-3) is a key player in various important signaling pathways in animals. The activity of GSK-3 is known to be modulated by protein phosphorylation and differential complex formation. However, little information is available regarding the function and regulation of plant GSK-3/shaggy-like kinases (GSKs). Analysis of the in vivo kinase activity of MsK1, a GSK from Medicago sativa, revealed that MsK1 is active in healthy plants and that MsK1 activity is down-regulated by the elicitor cellulase in a time- and dose-dependent manner. Surprisingly, cellulase treatment triggered the degradation of the MsK1 protein in a proteasome-dependent manner suggesting a novel mechanism of GSK-3 regulation. Inhibition of MsK1 kinase activity and degradation of the protein were two successive processes that could be uncoupled. In a transgenic approach, stimulus-induced inhibition of MsK1 was impeded by constant replenishment of MsK1 by a strong constitutive promoter. MsK1 overexpressing plants exhibited enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae. MAP kinase activation in response to pathogen infection was compromised in plants with elevated MsK1 levels. These data strongly suggest that tight regulation of the plant GSK-3, MsK1, may be important for innate immunity to limit the severity of virulent bacterial infection.  相似文献   
86.
Natriuretic peptides of various forms are present in animals and plants, and display structural similarities to cyclic antibacterial peptides. Pretreatment of Pseudomonas aeruginosa PAO1 with brain natriuretic peptide (BNP) or C-type natriuretic peptide (CNP) increases bacterium-induced glial cell necrosis. In eukaryotes, natriuretic peptides act through receptors coupled to cyclases. We observed that stable analogs of cAMP (dibutyryl cAMP) and cGMP (8-bromo-cGMP) mimicked the effect of brain natriuretic peptide and CNP on bacteria. Further evidence for the involvement of bacterial cyclases in the regulation of P. aeruginosa PAO1 cytotoxicity by natriuretic peptides is provided by the observed doubling of intrabacterial cAMP concentration after exposure to CNP. Lipopolysaccharide (LPS) extracted from P. aeruginosa PAO1 treated with both dibutyryl cAMP and 8-bromo-cGMP induces higher levels of necrosis than LPS extracted from untreated bacteria. Capillary electrophoresis and MALDI-TOF MS analysis have shown that differences in LPS toxicity are due to specific differences in the structure of the macromolecule. Using a strain deleted in the vfr gene, we showed that the Vfr protein is essential for the effect of natriuretic peptides on P. aeruginosa PAO1 virulence. These data support the hypothesis that P. aeruginosa has a cyclic nucleotide-dependent natriuretic peptide sensor system that may affect virulence by activating the expression of Vfr and LPS biosynthesis.  相似文献   
87.
To test the hypothesis that the decrease in plasma pH contributes to the hyperventilation observed in humans in response to exercise at high workloads, five healthy male subjects performed a ramp exercise [maximal workload: 352 W (SD 35)] in a control situation and when arterialized plasma pH was maintained at the resting level (pH clamp) by intravenous infusion of sodium bicarbonate [129 mmol (SD 23), beginning at 59% maximal workload (SD 5)]. Bicarbonate infusion did not modify O(2) consumption (Vo(2)) but significantly (P < 0.05) increased arterial Pco(2), plasma bicarbonate concentration, and respiratory exchange ratio (P < 0.05). At the three highest workloads, pulmonary ventilation (Ve) and Ve/Vo(2) were approximately 5-10% lower (P < 0.05) when bicarbonate was infused than in the control situation, and hyperventilation was reduced by 15-30%. These data suggest that the decrease in plasma pH is one of the factors that contribute to the hyperventilation observed at high workloads.  相似文献   
88.
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.  相似文献   
89.
90.
Treatment of the tonoplast H(+)-ATPase from mung bean seedlings (Vigna radiata L.) with histidine-specific modifier, diethyl pyrocarbonate (DEP), caused a marked loss of the ATP hydrolysis activity and the proton translocation in a concentration-dependent manner. The reaction order of inhibition was calculated to be 0.98, suggesting that at least one histidine residue of vacuolar H(+)-ATPase was modified by DEP. The absorbance of the vacuolar H(+)-ATPase at 240 nm was progressively increased after incubation with DEP, suggesting that N-carbethoxyhistidine had been formed. Hydroxylamine, which could break N-carbethoxyhistidine, reversed the absorbance change and partially restored the enzymic activity. The pK(a) of modified residues of vacuolar H(+)-ATPase was kinetically determined to be 6.73, a value close to that of histidine. Thus, it is assuredly concluded that histidine residues of the vacuolar H(+)-ATPase were modified by DEP. Kinetic analysis showed that V(max) but not K(m) of vacuolar H(+)-ATPase was decreased by DEP. This result is interpreted as that the residual activity after DEP inhibition was primarily due to the unmodified enzyme molecules. Moreover, simultaneous presence of DEP and DCCD (N,N'-dicyclohexyl-carbodiimide), an inhibitor modified at proteolipid subunit of vacuolar H(+)-ATPase, did not induce synergistic inhibition, indicating their independent effects. The stoichiometry studies further demonstrate that only one out of four histidine residues modified was involved in the inhibition of vacuolar H(+)-ATPase by DEP. Mg(2+)-ATP, the physiological substrate of vacuolar H(+)-ATPase, but not its analogs, exerted preferentially partial protection against DEP, indicating that the histidine residue involved in the inhibition of enzymatic activity may locate at/or near the active site and directly participate in the binding of the substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号