首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   14篇
  2021年   4篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   9篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2007年   6篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  1993年   2篇
  1992年   2篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
  1964年   2篇
  1963年   4篇
  1962年   3篇
  1961年   8篇
  1960年   5篇
  1959年   9篇
  1958年   5篇
  1956年   5篇
  1955年   5篇
  1953年   5篇
  1951年   4篇
  1950年   2篇
  1949年   4篇
  1948年   4篇
  1947年   2篇
  1946年   4篇
  1944年   4篇
  1942年   4篇
  1939年   7篇
  1938年   3篇
  1937年   3篇
  1936年   4篇
  1935年   4篇
  1932年   2篇
  1931年   3篇
  1930年   2篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
201.
Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase – a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.  相似文献   
202.
While a unique origin of the euarthropods is well established, relationships between the four euarthropod classes—chelicerates, myriapods, crustaceans and hexapods—are less clear. Unsolved questions include the position of myriapods, the monophyletic origin of chelicerates, and the validity of the close relationship of euarthropods to tardigrades and onychophorans. Morphology predicts that myriapods, insects and crustaceans form a monophyletic group, the Mandibulata, which has been contradicted by many molecular studies that support an alternative Myriochelata hypothesis (Myriapoda plus Chelicerata). Because of the conflicting insights from published molecular datasets, evidence from nuclear-coding genes needs corroboration from independent data to define the relationships among major nodes in the euarthropod tree. Here, we address this issue by analysing two independent molecular datasets: a phylogenomic dataset of 198 protein-coding genes including new sequences for myriapods, and novel microRNA complements sampled from all major arthropod lineages. Our phylogenomic analyses strongly support Mandibulata, and show that Myriochelata is a tree-reconstruction artefact caused by saturation and long-branch attraction. The analysis of the microRNA dataset corroborates the Mandibulata, showing that the microRNAs miR-965 and miR-282 are present and expressed in all mandibulate species sampled, but not in the chelicerates. Mandibulata is further supported by the phylogenetic analysis of a comprehensive morphological dataset covering living and fossil arthropods, and including recently proposed, putative apomorphies of Myriochelata. Our phylogenomic analyses also provide strong support for the inclusion of pycnogonids in a monophyletic Chelicerata, a paraphyletic Cycloneuralia, and a common origin of Arthropoda (tardigrades, onychophorans and arthropods), suggesting that previous phylogenies grouping tardigrades and nematodes may also have been subject to tree-reconstruction artefacts.  相似文献   
203.
Mandibular mechanisms in Geophilomorpha are revised based on three-dimensional reconstructions of the mandibulo-tentorial complex and its muscular equipment in Dicellophilus carniolensis (Placodesmata) and Hydroschendyla submarina (Adesmata). Tentorial structure compares closely in the two species and homologies can be proposed for the 14/17 muscles that attach to the tentorium. Both species retain homologues of muscles that in other Pleurostigmophora are traditionally thought to cause swinging movements of the tentorium that complement the mobility of the mandibles. Although the original set of tentorial muscles is simplified in Geophilomorpha, the arrangement of the preserved homologues conforms to a system of six degrees of freedom of movement, as in non-geophilomorph Pleurostigmophora. A simplification of the mandibular muscles is confirmed for Geophilomorpha, but our results reject absence of muscles that in other Pleurostigmophora primarily support see-saw movements of the mandibles. In the construction of the tentorium, paralabial sclerites seem to be involved in neither Placodesmata nor Adesmata, and we propose their loss in Geophilomorpha as a whole. Current insights on the tentorial skeleton and its musculature permit two alternative conclusions on their transformation in Geophilomorpha: either tentorial mobility is primarily maintained in both Placodesmata and Adesmata (contrary to Manton’s arguments for immobility), or the traditional assumption of the tentorium as being mobile is a misinterpretation for Pleurostigmophora as a whole.  相似文献   
204.
A new geophilomorph centipede, Geophilus hadesi sp. n., is described from caves in the Velebit Mountain, central Croatia. Together with Geophilus persephones Foddai & Minelli, 1999, described from Pierre Saint-Martin cave in France, they are the only two remarkably troglomorphic geophilomorphs hitherto known. The new species apparently belongs to a group of Geophilus species inhabiting mainly Western and Southern Europe, with a uniquely modified pretarsus in the second maxillae. Geophilus hadesi sp. n. shows unusual traits, some of which commonly found in troglobitic arthropods, including exceptionally elongated antennae, trunk segments and leg claws. The species is described upon specimens found in two caves at a depth below -250 m. Another two specimens apparently belonging to the same species have been recorded in another deep vertical cave at -980 m and -1100 m. The latter represents the world’s deepest record of Chilopoda as a whole.  相似文献   
205.
The genus Newportia Gervais, 1847, includes some 60 nominal species distributed in the Caribbean islands and from Mexico to central South America. Modern keys to species and subspecies are available, greatly facilitating identification, but some species are based on few specimens and have incomplete documentation of taxonomically-informative characters. In order to explore genetic variability and evolutionary relationships within geographically-widespread morphospecies, specimens of Newportia (Newportia) stolli (Pocock, 1896) and Newportia (Newportia) divergens Chamberlin, 1922, two nominal species distinguished principally by differences in suture patterns on T1, were sequenced for mitochondrial 16S rRNA and cytochrome c oxidase subunit I (COI) genes from populations in southern Mexico, Guatemala, Honduras and Brazil. Newportia (Newportia) stolli is paraphyletic with respect to Newportia (Newportia) divergens within a clade from Guatemala, Honduras, and Chiapas (Mexico), most trees being consistent with a single loss of a connection between the anterior transverse suture on T1, whereas specimens of “Newportia (Newportia) stolli” from Brazil are not closely allied to those from the Mesomerican type area. The widespread morphospecies Newportia (Newportia) monticola Pocock, 1890, was sequenced for the same loci from populations in Costa Rica, Colombia and Brazil, finding that specimens from these areas do not unite as a monophyletic group. Samples of Newportia (Newportia) oreina Chamberlin, 1915, from different regions of Mexico form geographic clusters that resolve as each other’s closest relatives. These results suggest that some widespread species of Newportia may be taxa of convenience more so than natural groupings. In several cases geographic proximity fits the phylogeny better than taxonomy, suggesting that non-monophyletic species do not result from use of inappropriate molecular markers. Molecular identification is possible for specimens missing taxonomically informative morphological characters, notably damaged specimens that lack the ultimate leg pair, a protocol that may also apply to other taxonomically difficult genera that are prone to damage (such as Cryptops).  相似文献   
206.
Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis.  相似文献   
207.
Bird's nest ferns (Asplenium spp.) support large numbers of invertebrates, including centipedes. As top invertebrate predators, centipedes drive ecosystem function, for example, by regulating decomposer populations, but we know little of their ecology in forest canopies. We provide the first detailed observations of the diversity and structure of the centipede communities of bird's nest ferns, revealing the importance of these epiphytes as nurseries for centipedes. We collected 305 centipedes equating to ˜11,300 mg of centipede biomass from 44 bird's nest ferns (22 of which were from the high canopy and 22 from the low canopy) in primary tropical rainforest in Sabah, Malaysian Borneo. Most abundant were the Scolopendromorpha (= 227 individuals), followed by the Geophilomorpha (= 59), Lithobiomorpha (= 14), and Scutigeromorpha (= 5). Although we observed very little overlap in species between the forest strata, scolopendromorph centipedes dominated throughout the canopy. Null model analysis revealed no significant competitive interactions; on the contrary, we observed centipedes sharing nest sites within the ferns on three of the ten occasions that we found nests. All nests belonged to centipedes of the family Scolopendridae, which are typically aggressive, and usually show negative spatial association. This study reveals a diverse community of canopy centipedes, providing further evidence of the importance of bird's nest ferns to a wide range of animals, many of which use the ferns at critical life stages. Future conservation strategies should regard these ubiquitous epiphytes as umbrella species and protect them accordingly in landscape management decisions.  相似文献   
208.

Background

We assessed the severity of the 2009 influenza pandemic by comparing pandemic mortality to seasonal influenza mortality. However, reported pandemic deaths were laboratory-confirmed – and thus an underestimation – whereas seasonal influenza mortality is often more inclusively estimated. For a valid comparison, our study used the same statistical methodology and data types to estimate pandemic and seasonal influenza mortality.

Methods and Findings

We used data on all-cause mortality (1999–2010, 100% coverage, 16.5 million Dutch population) and influenza-like-illness (ILI) incidence (0.8% coverage). Data was aggregated by week and age category. Using generalized estimating equation regression models, we attributed mortality to influenza by associating mortality with ILI-incidence, while adjusting for annual shifts in association. We also adjusted for respiratory syncytial virus, hot/cold weather, other seasonal factors and autocorrelation. For the 2009 pandemic season, we estimated 612 (range 266–958) influenza-attributed deaths; for seasonal influenza 1,956 (range 0–3,990). 15,845 years-of-life-lost were estimated for the pandemic; for an average seasonal epidemic 17,908. For 0–4 yrs of age the number of influenza-attributed deaths during the pandemic were higher than in any seasonal epidemic; 77 deaths (range 61–93) compared to 16 deaths (range 0–45). The ≥75 yrs of age showed a far below average number of deaths. Using pneumonia/influenza and respiratory/cardiovascular instead of all-cause deaths consistently resulted in relatively low total pandemic mortality, combined with high impact in the youngest age category.

Conclusion

The pandemic had an overall moderate impact on mortality compared to 10 preceding seasonal epidemics, with higher mortality in young children and low mortality in the elderly. This resulted in a total number of pandemic deaths far below the average for seasonal influenza, and a total number of years-of-life-lost somewhat below average. Comparing pandemic and seasonal influenza mortality as in our study will help assessing the worldwide impact of the 2009 pandemic.  相似文献   
209.
The colonization of three types of different plants, Zea mays, Arabidopsis thaliana, and Lemna minor, by GFP-labeled Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 was studied in gnotobiotic systems using confocal laser scanning microscopy and electron microscopy. It was demonstrated that FZB42 was able to colonize all the plants. On one hand, similar to some Gram-negative rhizobacteria like Pseudomonas, FZB42 favored the areas such as the concavities in root surfaces and the junctions where lateral roots occurred from the primary roots; on the other hand, we clearly demonstrated that root hairs were a popular habitat to the Gram-positive rhizobacterium. FZB42 exhibited a specific colonization pattern on each of the three types of plants. On Arabidopsis, tips of primary roots were favored by FZB42 but not so on maize. On Lemna, FZB42 accumulated preferably along the grooves between epidermal cells of roots and in the concave spaces on ventral sides of fronds. The results suggested L. minor to be a promising tool for investigations on plant-microbial interaction due to a series of advantages it has. Colonization of maize and Arabidopsis roots by FZB42 was also studied in the soil system. Comparatively, higher amount of FZB42 inoculum (∼108 CFU/ml) was required for detectable root colonization in the soil system, where the preference of FZB42 cells to root hairs were also observed.  相似文献   
210.
SUMMARY Saltational changes in segment numbers have likely occurred in arthropod evolution, especially if mechanisms of segment formation involve a multiplicative phase, as recently suggested in the evo-devo literature. Here we provide for the first time evidence of major phenotypic saltation in the evolution of segment number in a lineage of centipedes, with a newly discovered species of scolopender having segment numbers duplicated with respect to its closest relatives, and to all the remaining 700+ species of Scolopendromorpha known to date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号