首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   63篇
  1163篇
  2023年   3篇
  2022年   6篇
  2021年   20篇
  2020年   11篇
  2019年   23篇
  2018年   25篇
  2017年   17篇
  2016年   35篇
  2015年   51篇
  2014年   51篇
  2013年   75篇
  2012年   89篇
  2011年   113篇
  2010年   59篇
  2009年   47篇
  2008年   84篇
  2007年   81篇
  2006年   63篇
  2005年   74篇
  2004年   58篇
  2003年   42篇
  2002年   41篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1163条查询结果,搜索用时 15 毫秒
941.
The PRNP gene encodes the cellular isoform of prion protein (PrPc). The M129V polymorphism influences the risk of prion diseases and may modulate the rate of neurodegeneration with age. We present the first study of the polymorphism among Polish centenarians. In the control group (n = 165, ages 18 to 56 years) the observed M129V genotype frequencies agreed with those expected according to the Hardy-Weinberg equilibrium (MM, MV, VV): 43%, 44%, 13% (HWE p > 0.05). Among centenarians (n = 150, ages 100 to 107) both homozygotes were more common than expected and HWE was rejected: 46%, 37%, 17% (expected 42%, 46%, 13%; HWE p = 0.025). This finding is consistent with a higher mortality rate among heterozygotes. However, the observed allele and genotype frequencies did not differ significantly between the oldest-old and the young controls. The genotypic frequencies were not related to severe cognitive impairment among the centenarians.  相似文献   
942.

Background

Membrane proteins play a key role in many fundamental cellular processes such as transport of nutrients, sensing of environmental signals and energy transduction, and account for over 50% of all known drug targets. Despite their importance, structural and functional characterisation of membrane proteins still remains a challenge, partially due to the difficulties in recombinant expression and purification. Therefore the need for development of efficient methods for heterologous production is essential.

Methodology/Principal Findings

Fifteen integral membrane transport proteins from Archaea were selected as test targets, chosen to represent two superfamilies widespread in all organisms known as the Major Facilitator Superfamily (MFS) and the 5-Helix Inverted Repeat Transporter superfamily (5HIRT). These proteins typically have eleven to twelve predicted transmembrane helices and are putative transporters for sugar, metabolite, nucleobase, vitamin or neurotransmitter. They include a wide range of examples from the following families: Metabolite-H+-symporter; Sugar Porter; Nucleobase-Cation-Symporter-1; Nucleobase-Cation-Symporter-2; and neurotransmitter-sodium-symporter. Overproduction of transporters was evaluated with three vectors (pTTQ18, pET52b, pWarf) and two Escherichia coli strains (BL21 Star and C43 (DE3)). Thirteen transporter genes were successfully expressed; only two did not express in any of the tested vector-strain combinations. Initial trials showed that seven transporters could be purified and six of these yielded quantities of ≥ 0.4 mg per litre suitable for functional and structural studies. Size-exclusion chromatography confirmed that two purified transporters were almost homogeneous while four others were shown to be non-aggregating, indicating that they are ready for up-scale production and crystallisation trials.

Conclusions/Significance

Here, we describe an efficient strategy for heterologous production of membrane transport proteins in E. coli. Small-volume cultures (10 mL) produced sufficient amount of proteins to assess their purity and aggregation state. The methods described in this work are simple to implement and can be easily applied to many more membrane proteins.  相似文献   
943.
Abstract

Reactions of nucleoside H-phosphonates with various diols using different types of condensing agents have been studied. Depending on the coupling procedure and the length of a polymethylene chain of the diol, acyclic H-phosphonate diesters or cyclic phosphite triesters were formed. The course of oxidation with iodine to produce cyclic nucleoside alkyl phosphotriesters or hydroxyalkyl nucleoside phosphodiesters can be controlled by the amount of water present in the reaction medium.  相似文献   
944.
Noise-induced hearing loss (NIHL) is a complex disease that results from the interaction of genetic and environmental factors. Over the last 10 years there has been a great increase in association studies trying to identify the susceptibility genes for NIHL in humans. They were conducted based on the candidate gene approach and comprised predominantly the group of oxidative stress genes, inner ear potassium recycling pathway genes and monogenic deafness genes, as well as other genes. So far, the most promising results were obtained for two genes encoding potassium ion channels (KCNQ4 and KCNE1), catalase (CAT), protocadherin 15 (PCDH15), myosin 14 (MYH14) and heat shock protein (HSP70), because they were replicated in two (Polish and Swedish) or three (Polish, Swedish and Chinese) populations, and were sufficient in size to yield high power for the detection of a causative allele. Today, the development of high-throughput genotyping methods allows the detection of hundreds and thousands of single nucleotide polymorphisms (SNPs) in a single array which undoubtedly will lead toward identification of new NIHL susceptibility genes. This in turn will contribute to the development of genetics tests that would allow for better protection of noise-exposed individuals and personalized treatment, if necessary.  相似文献   
945.
946.
Nowadays, there are a number of colorimetric techniques available for the determination of a time killing assay in a manner much easier and faster than those previously more commonly used, which were much more time-consuming and laborious colony counting procedures. Here, an attempt has been made to test the antimicrobial peptides of Citropin 1.1, Palm-KK-NH2, and Temporin A on a reference strain of Staphylococcus aureus using resazurin as the cell viability reagent. Staphylococcus aureus was exposed to the test compounds over varying periods of time and the metabolic activity measured, with a profile of antimicrobial activity then established. The results are in agreement with data from previous literature, thus confirming the relevance of the application of resazurin for the testing of antimicrobial agents.  相似文献   
947.
The roles of EGF receptor (EGFR) kinase activity and ubiquitination in EGFR endocytosis have been controversial. The adaptor protein and ubiquitin ligase Cbl has reportedly been required. Consistently, we now report that siRNA-mediated knock-down of c-Cbl and Cbl-b significantly slowed clathrin-dependent internalization of activated wild-type (wt) EGFR by inhibiting recruitment of the EGFR to clathrin-coated pits. However, a chimeric protein consisting of wt-EGFR, a C-terminal linker and four linearly connected ubiquitins was found to interact with Eps15 and epsin 1 and to be constitutively endocytosed in a clathrin-dependent manner. Interestingly, endocytosis of this fusion protein did not require binding of EGF. Nor was kinase activity required, and the fusion protein was endocytosed in the presence of an EGFR kinase inhibitor, which efficiently counteracted tyrosine phosphorylation. This demonstrates that ubiquitination over-rides the requirement for kinase activity in recruitment of the EGFR to clathrin-coated pits.  相似文献   
948.
Signal integration in the control of shoot branching   总被引:6,自引:0,他引:6  
Shoot branching is a highly plastic developmental process in which axillary buds are formed in the axil of each leaf and may subsequently be activated to give branches. Three classes of plant hormones, auxins, cytokinins and strigolactones (or strigolactone derivatives) are central to the control of bud activation. These hormones move throughout the plant forming a network of systemic signals. The past decade brought great progress in understanding the mechanisms of shoot branching control. Biological and computational studies have led to the proposal of two models, the auxin transport canalization-based model and the second messenger model, which provide mechanistic explanations for apical dominance.  相似文献   
949.
The nucleoside diphosphate kinase Nm23-H4/NDPK-D forms symmetrical hexameric complexes in the mitochondrial intermembrane space with phosphotransfer activity using mitochondrial ATP to regenerate nucleoside triphosphates. We demonstrate the complex formation between Nm23-H4 and mitochondrial GTPase OPA1 in rat liver, suggesting its involvement in local and direct GTP delivery. Similar to OPA1, Nm23-H4 is further known to strongly bind in vitro to anionic phospholipids, mainly cardiolipin, and in vivo to the inner mitochondrial membrane. We show here that such protein-lipid complexes inhibit nucleoside diphosphate kinase activity but are necessary for another function of Nm23-H4, selective intermembrane lipid transfer. Mitochondrial lipid distribution was analyzed by liquid chromatography-mass spectrometry using HeLa cells expressing either wild-type Nm23-H4 or a membrane binding-deficient mutant at a site predicted based on molecular modeling to be crucial for cardiolipin binding and transfer mechanism. We found that wild type, but not the mutant enzyme, selectively increased the content of cardiolipin in the outer mitochondrial membrane, but the distribution of other more abundant phospholipids (e.g. phosphatidylcholine) remained unchanged. HeLa cells expressing the wild-type enzyme showed increased accumulation of Bax in mitochondria and were sensitized to rotenone-induced apoptosis as revealed by stimulated release of cytochrome c into the cytosol, elevated caspase 3/7 activity, and increased annexin V binding. Based on these data and molecular modeling, we propose that Nm23-H4 acts as a lipid-dependent mitochondrial switch with dual function in phosphotransfer serving local GTP supply and cardiolipin transfer for apoptotic signaling and putative other functions.  相似文献   
950.
Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report mutations (c.288G>T [p.Trp96Cys] and c.643C>T [p.Leu215Phe]) in CYC1, encoding the cytochrome c1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c. Cytochrome c1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals’ fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号