首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   7篇
  85篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2009年   3篇
  2008年   1篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1934年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
41.
alpha 1-Proteinase inhibitors (alpha 1-PIs) are members of the serpin superfamily of proteinase inhibitors, and are important in the maintenance of homeostasis in a wide variety of animal taxa. Previous studies have shown that in mice (genus Mus), evolution of alpha 1-PIs is characterized by gene amplification, region-specific concerted evolution, and rapid accumulation of amino acid substitutions. The latter occurs primarily in the reactive center, which is the region of the alpha 1-PI molecule that determines the inhibitor's specificity for target proteinases. The P1 residue within the reactive center, which is methionine in so-called orthodox alpha 1-PIs and an amino acid other than methionine in unorthodox alpha 1-PIs, is a primary determinant of inhibitor specificity. In the present study, we find that the expression of mRNAs encoding unorthodox alpha 1-PIs is polymorphic within Mus species, i.e., among individuals or inbred strains. This is in striking contrast to mRNAs that encode orthodox alpha 1-PIs, whose concentrations are relatively invariant. The intraspecies variations in mRNA expression represent polymorphisms in the structure of the alpha 1- PI gene family. The results, taken together with previously described aspects of alpha 1-PI evolution, indicate that the dissimilar levels of polymorphism exhibited by orthodox and unorthodox alpha 1-PIs, which likely have distinct physiological functions, may reflect different levels of selective constraint. The significance of this finding to the evolution of gene families is discussed.   相似文献   
42.
Ecosystems provide multiple services upon which humans depend. Understanding the drivers of the ecosystem functions that support these services is therefore important. Much research has investigated how species richness influences functioning, but we lack knowledge of how other community attributes affect ecosystem functioning. Species evenness, species spatial arrangement, and the identity of dominant species are three attributes that could affect ecosystem functioning, by altering the relative abundance of functional traits and the probability of synergistic species interactions such as facilitation and complementary resource use. We tested the effect of these three community attributes and their interactions on ecosystem functions over a growing season, using model grassland communities consisting of three plant species from three functional groups: a grass (Anthoxanthum odoratum), a forb (Plantago lanceolata), and a N-fixing forb (Lotus corniculatus). We measured multiple ecosystem functions that support ecosystem services, including ecosystem gas exchange, water retention, C and N loss in leachates, and plant biomass production. Species evenness and dominant species identity strongly influenced the ecosystem functions measured, but spatial arrangement had few effects. By the end of the growing season, evenness consistently enhanced ecosystem functioning and this effect occurred regardless of dominant species identity. The identity of the dominant species under which the highest level of functioning was attained varied across the growing season. Spatial arrangement had the weakest effect on functioning, but interacted with dominant species identity to affect some functions. Our results highlight the importance of understanding the role of multiple community attributes in driving ecosystem functioning.  相似文献   
43.
Internal eliminated sequences (IESs) often interrupt ciliate genes in the silent germline nucleus but are exactly excised and eliminated from the developing somatic nucleus from which genes are then expressed. Some long IESs are transposons, supporting the hypothesis that short IESs are ancient transposon relics. In light of that hypothesis and to explore the evolutionary history of a collection of IESs, we have compared various alleles of a particular locus (the 81 locus) of the ciliated protozoa Oxytricha trifallax and O. fallax. Three short IESs that interrupt two genes of the locus are found in alleles from both species, and thus must be relatively ancient, consistent with the hypothesis that short IESs are transposon relics. In contrast, TBE1 transposon interruptions of the locus are allele-specific and probably the results of recent transpositions. These IESs (and the TBE1s) are precisely excised from the DNA of the developing somatic macronucleus. Each IES interrupts a highly conserved sequence. A few nucleotides at the ends of each IES are also conserved, suggesting that they interact critically with IES excision machinery. However, most IES nucleotide positions have evolved at high rates, showing little or no selective constraint for function. Nonetheless, the length of each IES has been maintained (+/- 3 bp). While one IES is approximately 33 bp long, three other IESs have very similar sizes, approximately 70 bp long. Two IESs are surrounded by direct repeats of the sequence TTCTT. No other sequence similarities were found between any of the four IESs. However, the ends of one IES do match the inverted terminal repeat consensus sequence of the "TA" IESs of Paramecium. Three O. trifallax alleles appear to have been recipients in recent conversion events that could have been provoked by double-strand breaks associated with IES ends subsequent to IES transposition. Our findings support the hypothesis that short IESs evolved from ancient transposons that have lost most of their sequences, except those necessary for precise excision during macronuclear development.   相似文献   
44.
A series of peptides based on the structure of the proteinase inhibitor chymostatin were tested for their toxicity and ability to suppress protein degradation in the isolated mouse diaphragm. The inhibitory activities of the analogues were very similar, in marked contrast to their disparate abilities as inhibitors of chymotrypsin. Toxicity was determined by measurement of the rates of protein synthesis and of leakage of lactate dehydrogenase into the incubation medium. No significant toxicity was measurable at concentrations of inhibitor that were effective at suppressing proteolysis. The structural features of the chymostatin molecule may be less than optimal for suppression of proteolysis in muscle.  相似文献   
45.
46.
SUMMARY

Emphasis is given to the importance of wetlands and the need for a rational and multi-use approach to their development. Their occurence in the landscape is explained and a brief account is given of characteristic soils and other related features.

Wetlands are widely distributed in certain landscapes and generally have high agricultural potential, especially for the production of cultivated pastures. A large proportion of the vleis in Natal have already been developed.

Important principles and procedures to be considered in planning wetland development are presented. The urgent need to develop a wetland strategy, initiate appropriate research, apply effective legislation and identify wetlands in need of total protection is stressed.  相似文献   
47.
Andrew Wilby  Kate H. Orwin 《Oecologia》2013,172(4):1167-1177
Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.  相似文献   
48.
One of the hallmarks of Alzheimer’s disease is the accumulation of toxic amyloid-β (Aβ) peptides in extracellular plaques. The direct precursor of Aβ is the carboxyl-terminal fragment β (or C99) of the amyloid precursor protein (APP). C99 is detected at elevated levels in Alzheimer’s disease brains, and its intracellular accumulation has been linked to early neurotoxicity independently of Aβ. Despite this, the causes of increased C99 levels are poorly understood. Here, we demonstrate that APP interacts with the clathrin vesicle adaptor AP-1 (adaptor protein 1), and we map the interaction sites on both proteins. Using quantitative kinetic trafficking assays, established cell lines and primary neurons, we also show that this interaction is required for the transport of APP from the trans-Golgi network to endosomes. In addition, disrupting AP-1-mediated transport of APP alters APP processing and degradation, ultimately leading to increased C99 production and Aβ release. Our results indicate that AP-1 regulates the subcellular distribution of APP, altering its processing into neurotoxic fragments.  相似文献   
49.
Antigen/antibody complexes can efficiently target antigen presenting cells to allow stimulation of the cellular immune response. Due to the difficulty of manufacture and their inherent instability complexes have proved inefficient cancer vaccines. However, anti-idiotypic antibodies mimicking antigens have been shown to stimulate both antibody and T cell responses. The latter are due to T cell mimotopes expressed within the complementarity-determining regions (CDRs) of antibodies that are efficiently presented to dendritic cells in vivo. Based on this observation we have designed a DNA vaccine platform called ImmunoBody™, where cytotoxic T lymphocyte (CTL) and helper T cell epitopes replace CDR regions within the framework of a human IgG1 antibody. The ImmunoBody™ expression system has a number of design features which allow for rapid production of a wide range of vaccines. The CDR regions of the heavy and light chain have been engineered to contain unique restriction endonuclease sites, which can be easily opened, and oligonucleotides encoding the T cell epitopes inserted. The variable and constant regions of the ImmunoBody™ are also flanked by restriction sites, which permit easy exchange of other IgG subtypes. Here we show a range of T cell epitopes can be inserted into the ImmunoBody™ vector and upon immunization these T cell epitopes are efficiently processed and presented to stimulate high frequency helper and CTL responses capable of anti-tumor activity.Key words: DNA vaccines, cancer vaccines, melanoma, CTL, helper T cells  相似文献   
50.

Background  

Since Darwin's Origin of Species, reconstructing the Tree of Life has been a goal of evolutionists, and tree-thinking has become a major concept of evolutionary biology. Practically, building the Tree of Life has proven to be tedious. Too few morphological characters are useful for conducting conclusive phylogenetic analyses at the highest taxonomic level. Consequently, molecular sequences (genes, proteins, and genomes) likely constitute the only useful characters for constructing a phylogeny of all life. For this reason, tree-makers expect a lot from gene comparisons. The simultaneous study of the largest number of molecular markers possible is sometimes considered to be one of the best solutions in reconstructing the genealogy of organisms. This conclusion is a direct consequence of tree-thinking: if gene inheritance conforms to a tree-like model of evolution, sampling more of these molecules will provide enough phylogenetic signal to build the Tree of Life. The selection of congruent markers is thus a fundamental step in simultaneous analysis of many genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号