首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   6篇
  2016年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1998年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有45条查询结果,搜索用时 281 毫秒
11.
Loss of heterozygosity (LOH) of tumour suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Recently, we and others have developed mouse models in which the frequency and nature of LOH events at an autosomal locus can be elucidated in genetically stable normal somatic cells. In this paper, an overview is presented of recent studies in LOH-detecting mouse models. Molecular mechanisms that lead to LOH and the effects of genetic and environmental variables are discussed. The general finding that LOH of a marker gene occurs frequently in somatic cells of the mouse without deleterious effects on cell viability, suggests that also tumour suppressor genes are lost in similar frequencies. LOH of tumour suppressor genes may thus be an initiating event in cancer development.  相似文献   
12.
13.

Background

Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease.

Results

Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system.

Conclusions

This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.
  相似文献   
14.

Background

The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome c oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed).

Results

We used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens.

Conclusion

In this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.  相似文献   
15.
16.
A mouse model was generated to investigate loss of heterozygosity (LOH) events in somatic cells. The adenine phosphoribosyltransferase ( Aprt ) gene was disrupted in embryonic stem cells using a conventional gene targeting approach and subsequently Aprt hetero-zygous and homozygous mice were derived. Aprt homozygous deficient animals were viable though the mendelian inheritance pattern was skewed. On average these mice died at 6 months of age from severe renal failure. In T-lymphocytes of Aprt heterozygous mice the mean spontaneous mutant frequency at the Aprt locus was 8.7 x 10(-6) while the frequency was 0.8 x 10(-6) at the hypoxanthine phosphoribosyltransferase locus. In order to determine whether LOH events contribute to the high spontaneous mutant frequency at the Aprt locus, 140 Aprt mutant T-lymphocyte clones were expanded and analysed by allele-specific PCR. In 97 (69%) of these clones the wild-type allele had been lost. Nine of the mutant clones were characterized in more detail using dual-coloured fluorescence in situ hybridization analysis. Five out of six of the mutant clones which arose from an LOH event, based on the PCR assay, contained a duplication of the targeted allele. Therefore, mitotic recombination or chromosome loss followed by duplication of the remaining homologue appears to be the predominant mechanism for the in vivo generation of Aprt mutant T-lymphocytes.  相似文献   
17.
Dermatan sulfate (DS) is a member of the glycosaminoglycan (GAG) family and is primarily located in the extracellular matrix. Using a modified phage display procedure, we selected 2 different antibodies against DS of which one antibody, LKN1, was specific for DS. LKN1 was especially reactive with 4/2,4-di-O-sulfated DS, and did not react with other classes of GAGs including chondroitin sulfate and heparan sulfate. Immunohistochemical analysis of kidney, skin and tendon showed a typical fibrillar staining pattern, co-localizing with type I collagen. Staining was abolished by specific enzymatic digestion of DS. Immunoelectron microscopy confirmed the association of the DS epitope with collagen fibrils. The location of DS did not follow the main banding period of collagen, which is in line with the current concept that the core protein rather than the DS moiety of DS-proteoglycans specifically binds to collagen fibrils. This unique anti-DS antibody and the availability of its coding DNA may be instrumental in studies of the structure and function of DS.  相似文献   
18.
19.
Expression analyses suggest that alterations of the antioxidant state of some diffuse large B-cell lymphomas can assist prognosis; reversibly oxidized thiols may serve as a surrogate marker for identifying such cases. Little is known about the distribution of free thiols and reversibly oxidized thiols in human tissues. We developed a staining technique that enables visualization of tissue thiols in situ using bright field microscopy and validated it using gastrointestinal tissue specimens. We used our thiol staining technique to assess benign tonsillectomy and diffuse large B-cell lymphoma specimens. The gastrointestinal series revealed the presence of free thiols within epithelial cells and cells of the lamina propria. Staining for reversibly oxidized thiols was robust in gastric foveolar cells, intestinal goblet cells and the mucus they produce. Tonsillectomy specimens exhibited diffuse presence of free thiols. Staining for reversibly oxidized thiols was confined to germinal center macrophages and sinus histiocytes. Among the diffuse large B-cell lymphoma specimens, we observed strong staining for free thiols within malignant cells. By contrast to benign B-cells, the malignant cells demonstrated pronounced and diffuse staining for reversibly oxidized thiols. We demonstrated intrinsic differences between benign and malignant cells.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号