首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3043篇
  免费   221篇
  国内免费   4篇
  2023年   18篇
  2022年   19篇
  2021年   44篇
  2020年   38篇
  2019年   69篇
  2018年   78篇
  2017年   82篇
  2016年   117篇
  2015年   208篇
  2014年   191篇
  2013年   237篇
  2012年   296篇
  2011年   291篇
  2010年   181篇
  2009年   129篇
  2008年   192篇
  2007年   174篇
  2006年   150篇
  2005年   118篇
  2004年   159篇
  2003年   140篇
  2002年   107篇
  2001年   37篇
  2000年   27篇
  1999年   29篇
  1998年   22篇
  1997年   15篇
  1996年   16篇
  1995年   11篇
  1994年   9篇
  1993年   3篇
  1992年   12篇
  1991年   8篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   4篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1956年   1篇
排序方式: 共有3268条查询结果,搜索用时 429 毫秒
101.
Many questions regarding proteins involved in microbial sulfur metabolism remain unsolved. For sulfur respiration at low pH, the terminal electron acceptor is still unclear. Desulfurella amilsii is a sulfur-reducing bacterium that respires elemental sulfur (S0) or thiosulfate, and grows by S0 disproportionation. Due to its versatility, comparative studies on D. amilsii may shed light on microbial sulfur metabolism. Requirement of physical contact between cells and S0 was analyzed. Sulfide production decreased by around 50% when S0 was trapped in dialysis membranes, suggesting that contact between cells and S0 is beneficial, but not strictly needed. Proteome analysis was performed under the aforementioned conditions. A Mo-oxidoreductase suggested from genome analysis to act as sulfur reductase was not detected in any growth condition. Thiosulfate and sulfite reductases showed increased abundance in thiosulfate-reducing cultures, while rhodanese-like sulfurtransferases were highly abundant in all conditions. DsrE and DsrL were abundantly detected during thiosulfate reduction, suggesting a modified mechanism of sulfite reduction. Proteogenomics suggest a different disproportionation pathway from what has been reported. This work points to an important role of rhodaneses in sulfur processes and these proteins should be considered in searches for sulfur metabolism in broader fields like meta-omics.  相似文献   
102.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   
103.
Syngas fermentation is largely dependent on acetogens that occur in various anaerobic environmental samples including soil, sediment, and feces. Here the authors report the metagenomic isolation of acetogens for C2 chemical production from syngas. Screening acetogens for C2 chemical production typically involves detecting the presence of the Wood‐Ljungdahl Pathway for carbon monoxide conversion. The authors collect samples from river‐bed sediments potentially having conditions suitable for carbon monoxide‐converting anaerobes, and enrich the samples under carbon monoxide selection pressure. Changes in the microbial community during the experimental procedure are investigated using both amplicon and shotgun metagenome sequencing. Combined next‐generation sequencing techniques enabl in situ tracking of the major acetogenic bacterial group and lead to the discovery of a 16 kb of gene cluster for WLP. The authors isolat an acetogenic clostridial strain from the enrichment culture (strain H21‐9). The functional activity of H21‐9 is confirmed by its high level of production of C2 chemicals from carbon monoxide (77.4 mM acetate and 2.5 mM of ethanol). This approach of incorporating experimental enrichment with metagenomic analysis can facilitate the discovery of novel strains from environmental habitats by tracking target strains during the screening process, combined with validation of their functional activity.  相似文献   
104.
Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. F. prausnitzii produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in F. prausnitzii were cloned and expressed in E. coli to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the E. coli Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, N-acetylglucosamine (NAG), N-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the E. coli Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into E. coli Nissle 1917 led to increased butyric acid production, which improved the strain’s health-beneficial effects.  相似文献   
105.
With the aim of identifying genes involved in development and parasite adaptation in cestodes, four coding sequences were isolated from the cyclophyllidean Mesocestoides corti larval stage (tetrathyridium). Genes showed significant similarity to the cysteine-rich secreted protein (CRISP) encoding genes, a large family that includes stage and tissue-specific genes from diverse organisms, many associated with crucial biological processes. The full-length McCrisp2 cDNA encodes a predicted protein of 202 residues in length, containing 10 cysteines and a putative signal peptide. The expression level of McCrisp2 was estimated by Real-time PCR, relative to GAPDH, showing an increase of 75% in segmented worms compared to tetrathyridia. By in situ hybridization, McCrisp2 expression was localized mainly at the larvae apical region of tetrathyridia and in the proglottids of segmented worms. Taken together our results suggest a possible role for M. corti CRISP proteins as ES products, potentially involved in differentiation processes as proposed for homologs in other organisms.  相似文献   
106.
A major gap in our knowledge of the evolution of marsupial mammals concerns the Paleogene of the northern continents, a critical time and place to link the early history of metatherians in Asia and North America with the more recent diversification in South America and Australia. We studied new exceptionally well-preserved partial skeletons of the Early Oligocene fossil Herpetotherium from the White River Formation in Wyoming, which allowed us to test the relationships of this taxon and examine its adaptations. Herpetotheriidae, with a fossil record extending from the Cretaceous to the Miocene, has traditionally been allied with opossums (Didelphidae) based on fragmentary material, mainly dentitions. Analysis of the new material reveals that several aspects of the cranial and postcranial anatomy, some of which suggests a terrestrial lifestyle, distinguish Herpetotherium from opossums. We found that Herpetotherium is the sister group to the crown group Marsupialia and is not a stem didelphid. Combination of the new palaeontological data with molecular divergence estimates, suggests the presence of a long undocumented gap in the fossil record of opossums extending some 45Myr from the Early Miocene to the Cretaceous.  相似文献   
107.
An unsuspected biomineralization process, which produces intracellular inclusions of amorphous calcium carbonate (ACC), was recently discovered in unicellular eukaryotes. These mineral inclusions, called micropearls, can be highly enriched with other alkaline-earth metals (AEM) such as Sr and Ba. Similar intracellular inclusions of ACC have also been observed in prokaryotic organisms. These comparable biomineralization processes involving phylogenetically distant microorganisms are not entirely understood yet. This review gives a broad vision of the topic in order to establish a basis for discussion on the possible molecular processes behind the formation of the inclusions, their physiological role, the impact of these microorganisms on the geochemical cycles of AEM and their evolutionary relationship. Finally, some insights are provided to guide future research.  相似文献   
108.
Neurochemical Research - The brain uses mainly glucose as fuel with an index of glucose to oxygen utilization close to 6, the maximal index if all glucose was completely oxidized. However, this...  相似文献   
109.
Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.  相似文献   
110.
Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin’s ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号