首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6754篇
  免费   620篇
  国内免费   2篇
  2024年   7篇
  2023年   45篇
  2022年   76篇
  2021年   128篇
  2020年   90篇
  2019年   112篇
  2018年   170篇
  2017年   127篇
  2016年   233篇
  2015年   398篇
  2014年   415篇
  2013年   490篇
  2012年   627篇
  2011年   565篇
  2010年   371篇
  2009年   306篇
  2008年   404篇
  2007年   403篇
  2006年   354篇
  2005年   324篇
  2004年   357篇
  2003年   303篇
  2002年   270篇
  2001年   57篇
  2000年   49篇
  1999年   68篇
  1998年   90篇
  1997年   45篇
  1996年   32篇
  1995年   48篇
  1994年   34篇
  1993年   33篇
  1992年   37篇
  1991年   21篇
  1990年   20篇
  1989年   20篇
  1988年   24篇
  1987年   12篇
  1986年   12篇
  1985年   15篇
  1984年   14篇
  1983年   15篇
  1982年   13篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   8篇
  1976年   9篇
  1974年   10篇
  1972年   5篇
排序方式: 共有7376条查询结果,搜索用时 16 毫秒
901.
902.
In most adult humans, hepatitis B is a self-limiting disease leading to life-long protective immunity, which is the consequence of a robust adaptive immune response occurring weeks after hepatitis B virus (HBV) infection. Notably, HBV-specific T cells can be detected shortly after infection, but the mechanisms underlying this early immune priming and its consequences for subsequent control of viral replication are poorly understood. Using primary human and mouse hepatocytes and mouse models of transgenic and adenoviral HBV expression, we show that HBV-expressing hepatocytes produce endoplasmic reticulum (ER)-associated endogenous antigenic lipids including lysophospholipids that are generated by HBV-induced secretory phospholipases and that lead to activation of natural killer T (NKT) cells. The absence of NKT cells or CD1d or a defect in ER-associated transfer of lipids onto CD1d results in diminished HBV-specific T and B cell responses and delayed viral control in mice. NKT cells may therefore contribute to control of HBV infection through sensing of HBV-induced modified self-lipids.  相似文献   
903.
In preclinical studies, erythropoietin (EPO) reduces ischemia-reperfusion-associated tissue injury (for example, stroke, myocardial infarction, acute kidney injury, hemorrhagic shock and liver ischemia). It has been proposed that the erythropoietic effects of EPO are mediated by the classic EPO receptor homodimer, whereas the tissue-protective effects are mediated by a hetero-complex between the EPO receptor monomer and the β-common receptor (termed "tissue-protective receptor"). Here, we investigate the effects of a novel, selective-ligand of the tissue-protective receptor (pyroglutamate helix B surface peptide [pHBSP]) in a rodent model of acute kidney injury/dysfunction. Administration of pHBSP (10 μg/kg intraperitoneally [i.p.] 6 h into reperfusion) or EPO (1,000 IU/kg i.p. 4 h into reperfusion) to rats subjected to 30 min ischemia and 48 h reperfusion resulted in significant attenuation of renal and tubular dysfunction. Both pHBSP and EPO enhanced the phosphorylation of Akt (activation) and glycogen synthase kinase 3β (inhibition) in the rat kidney after ischemia-reperfusion, resulting in prevention of the activation of nuclear factor-κB (reduction in nuclear translocation of p65). Interestingly, the phosphorylation of endothelial nitric oxide synthase was enhanced by EPO and, to a much lesser extent, by pHBSP, suggesting that the signaling pathways activated by EPO and pHBSP may not be identical.  相似文献   
904.
905.
Publicly Available Specification 2050‐2011 (PAS 2050), the Green House Gas Product Protocol (GHGPP) standard and forthcoming guideline 14067 from the International Organization for Standardization (ISO) have helped to propel carbon footprinting from a subdiscipline of life cycle assessment (LCA) to the mainstream. However, application of carbon footprinting to large portfolios of many distinct products and services is immensely resource intensive. Even if achieved, it often fails to inform company‐wide carbon reduction strategies because footprint data are disjointed or don't cover the whole portfolio. We introduce a novel approach to generate standard‐compliant product carbon footprints (CFs) for companies with large portfolios at a fraction of previously required time and expertise. The approach was developed and validated on an LCA dataset covering 1,137 individual products from a global packaged consumer goods company. Three novel techniques work in concert in a single approach that enables practitioners to calculate thousands of footprints virtually simultaneously: (i) a uniform data structure enables footprinting all products and services by looping the same algorithm; (ii) concurrent uncertainty analysis guides practitioners to gradually improve the accuracy of only those data that materially impact the results; and (iii) a predictive model generates estimated emission factors (EFs) for materials, thereby eliminating the manual mapping of a product or service's inventory to EF databases. These autogenerated EFs enable non‐LCA experts to calculate approximate CFs and alleviate resource constraints for companies embarking on large‐scale product carbon footprinting. We discuss implementation roadmaps for companies, including further road‐testing required to evaluate the effectiveness of the approach for other product portfolios, limitations, and future improvements of the fast footprinting methodology.  相似文献   
906.
Vascular ischemic diseases, hypertension, and other systemic hemodynamic and vascular disorders may be the result of impaired bioavailability of nitric oxide (NO). NO but also its active derivates like nitrite or nitroso compounds are important effector and signal molecules with vasodilating properties. Our previous findings point to a therapeutical potential of cutaneous administration of NO in the treatment of systemic hemodynamic disorders. Unfortunately, no reliable data are available on the mechanisms, kinetics and biological responses of dermal application of nitric oxide in humans in vivo. The aim of the study was to close this gap and to explore the therapeutical potential of dermal nitric oxide application. We characterized with human skin in vitro and in vivo the capacity of NO, applied in a NO-releasing acidified form of nitrite-containing liniments, to penetrate the epidermis and to influence local as well as systemic hemodynamic parameters. We found that dermal application of NO led to a very rapid and significant transepidermal translocation of NO into the underlying tissue. Depending on the size of treated skin area, this translocation manifests itself through a significant systemic increase of the NO derivates nitrite and nitroso compounds, respectively. In parallel, this translocation was accompanied by an increased systemic vasodilatation and blood flow as well as reduced blood pressure. We here give evidence that in humans dermal application of NO has a therapeutic potential for systemic hemodynamic disorders that might arise from local or systemic insufficient availability of NO or its bio-active NO derivates, respectively.  相似文献   
907.
908.
Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies.  相似文献   
909.
In our previous work we showed that NGAL, a protein involved in the regulation of proliferation and differentiation, is overexpressed in human breast cancer (BC) and predicts poor prognosis. In neoadjuvant chemotherapy (NACT) pathological complete response (pCR) is a predictor for outcome. The aim of this study was to evaluate NGAL as a predictor of response to NACT and to validate NGAL as a prognostic factor for clinical outcome in patients with primary BC. Immunohistochemistry was performed on tissue microarrays from 652 core biopsies from BC patients, who underwent NACT in the GeparTrio trial. NGAL expression and intensity was evaluated separately. NGAL was detected in 42.2% of the breast carcinomas in the cytoplasm. NGAL expression correlated with negative hormone receptor (HR) status, but not with other baseline parameters. NGAL expression did not correlate with pCR in the full population, however, NGAL expression and staining intensity were significantly associated with higher pCR rates in patients with positive HR status. In addition, strong NGAL expression correlated with higher pCR rates in node negative patients, patients with histological grade 1 or 2 tumors and a tumor size <40 mm. In univariate survival analysis, positive NGAL expression and strong staining intensity correlated with decreased disease-free survival (DFS) in the entire cohort and different subgroups, including HR positive patients. Similar correlations were found for intense staining and decreased overall survival (OS). In multivariate analysis, NGAL expression remained an independent prognostic factor for DFS. The results show that in low-risk subgroups, NGAL was found to be a predictive marker for pCR after NACT. Furthermore, NGAL could be validated as an independent prognostic factor for decreased DFS in primary human BC.  相似文献   
910.
Engineering specific interactions between proteins and small molecules is extremely useful for biological studies, as these interactions are essential for molecular recognition. Furthermore, many biotechnological applications are made possible by such an engineering approach, ranging from biosensors to the design of custom enzyme catalysts. Here, we present a novel method for the computational design of protein-small ligand binding named PocketOptimizer. The program can be used to modify protein binding pocket residues to improve or establish binding of a small molecule. It is a modular pipeline based on a number of customizable molecular modeling tools to predict mutations that alter the affinity of a target protein to its ligand. At its heart it uses a receptor-ligand scoring function to estimate the binding free energy between protein and ligand. We compiled a benchmark set that we used to systematically assess the performance of our method. It consists of proteins for which mutational variants with different binding affinities for their ligands and experimentally determined structures exist. Within this test set PocketOptimizer correctly predicts the mutant with the higher affinity in about 69% of the cases. A detailed analysis of the results reveals that the strengths of PocketOptimizer lie in the correct introduction of stabilizing hydrogen bonds to the ligand, as well as in the improved geometric complemetarity between ligand and binding pocket. Apart from the novel method for binding pocket design we also introduce a much needed benchmark data set for the comparison of affinities of mutant binding pockets, and that we use to asses programs for in silico design of ligand binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号