首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11873篇
  免费   671篇
  国内免费   140篇
  12684篇
  2023年   83篇
  2022年   109篇
  2021年   209篇
  2020年   184篇
  2019年   244篇
  2018年   454篇
  2017年   375篇
  2016年   512篇
  2015年   521篇
  2014年   621篇
  2013年   886篇
  2012年   810篇
  2011年   899篇
  2010年   524篇
  2009年   393篇
  2008年   599篇
  2007年   648篇
  2006年   670篇
  2005年   562篇
  2004年   474篇
  2003年   520篇
  2002年   399篇
  2001年   301篇
  2000年   252篇
  1999年   184篇
  1998年   103篇
  1997年   66篇
  1996年   41篇
  1995年   52篇
  1994年   53篇
  1993年   34篇
  1992年   61篇
  1991年   56篇
  1990年   62篇
  1989年   50篇
  1988年   29篇
  1987年   38篇
  1986年   33篇
  1985年   49篇
  1984年   34篇
  1983年   33篇
  1982年   24篇
  1981年   22篇
  1980年   22篇
  1979年   24篇
  1978年   23篇
  1977年   21篇
  1974年   20篇
  1953年   20篇
  1952年   40篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Secondary amyloid A (AA) amyloidosis is an important complication of some chronic inflammatory diseases, primarily rheumatoid arthritis (RA). It is a serious, potentially life‐threatening disorder caused by the deposition of AA fibrils, which are derived from the circulatory, acute‐phase‐reactant, serum amyloid A protein (SAA). Recently, a specific interaction between SAA and the ubiquitous inhibitor of cysteine proteases—human cystatin C (hCC)—has been proved. Using a combination of selective proteolytic excision and high‐resolution mass spectrometry, the binding sites in the SAA and hCC sequences were assessed as SAA(86–104) and hCC(96–102), respectively. Here, we report further details concerning the hCC–SAA interaction. With the use of affinity tests and florescent ELISA‐like assays, the amino acid residues crucial for the protein interaction were determined. It was shown that all amino acid residues in the SAA sequence, essential for the formation of the protein complex, are basic ones, which suggests an electrostatic interaction character. The idea is corroborated by the fact that the most important residues in the hCC sequence are Ser‐98 and Tyr‐102; these residues are able to form hydrogen bonds via their hydroxyl groups. The molecular details of hCC–SAA complex formation might be helpful for the design of new compounds modulating the biological role of both proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
62.

Key message

NGS-assisted super pooling emerging as powerful tool to accelerate gene mapping and haplotype association analysis within target region uncovering specific linkage SNPs or alleles for marker-assisted gene pyramiding.

Abstract

Conventional gene mapping methods to identify genes associated with important agronomic traits require significant amounts of financial support and time. Here, a single nucleotide polymorphism (SNP)-based mapping approach, RNA-Seq and SNP array assisted super pooling analysis, was used for rapid mining of a candidate genomic region for stripe rust resistance gene Yr26 that has been widely used in wheat breeding programs in China. Large DNA and RNA super-pools were genotyped by Wheat SNP Array and sequenced by Illumina HiSeq, respectively. Hundreds of thousands of SNPs were identified and then filtered by multiple filtering criteria. Among selected SNPs, over 900 were found within an overlapping interval of less than 30 Mb as the Yr26 candidate genomic region in the centromeric region of chromosome arm 1BL. The 235 chromosome-specific SNPs were converted into KASP assays to validate the Yr26 interval in different genetic populations. Using a high-resolution mapping population (>?30,000 gametes), we confined Yr26 to a 0.003-cM interval. The Yr26 target region was anchored to the common wheat IWGSC RefSeq v1.0 and wild emmer WEWSeq v.1.0 sequences, from which 488 and 454 kb fragments were obtained. Several candidate genes were identified in the target genomic region, but there was no typical resistance gene in either genome region. Haplotype analysis identified specific SNPs linked to Yr26 and developed robust and breeder-friendly KASP markers. This integration strategy can be applied to accelerate generating many markers closely linked to target genes/QTL for a trait of interest in wheat and other polyploid species.
  相似文献   
63.
Bilobetin and 4'-O-methylamentoflavone were isolated and identified in the needles of Taxus baccata, for the first time in this species. The antifungal activity of biflavones from T. baccata and Ginkgo biloba, namely amentoflavone, 7-O-methylamentoflavone, bilobetin, ginkgetin, sciadopitysin and 2,3-dihydrosciadopitysin towards the fungi Alternaria alternata, Fusarium culmorum, Cladosporium oxysporum was determined employing computer-aided image analysis couplet to a microscope. Bilobetin exhibited a significant antifungal activity with values of ED50 14, 11 and 17 microM respectively. This compound completely inhibited the growth of germinating tubes of Cladosporium oxysporum and Fusarium culmorum at a concentration 100 microM. Activity of ginkgetin and 7-O-methylamentoflavone towards Alternaria alternata was stronger than that of bilobetin. Moreover, slight structural changes in the cell wall of Alternaria alternata exposed to ginkgetin at concentration of 200 microM were observed.  相似文献   
64.
In addition to the known antitumour effects of ursolic acid (UA), increasing evidence indicates that this molecule plays a role in cardiac protection. In this study, the effects of ursolic acid on the heart in mice treated with doxorubicin (DOX) were assessed. The results showed that ursolic acid improved left ventrical fractional shortening (LVFS) and left ventrical ejection fraction (LVEF) of the heart, increased nitrogen oxide (NO) levels, inhibited reactive oxygen species (ROS) production and decreased cardiac apoptosis in mice treated with doxorubicin. Mechanistically, ursolic acid increased AKT and endothelial nitric‐oxide synthase (eNOS) phosphorylation levels, and enhanced eNOS expression, while inhibiting doxorubicin induced eNOS uncoupling through NADPH oxidase 4 (NOX4) down‐regulation. These effects of ursolic acid resulted in heart protection from doxorubicin‐induced injury. Therefore, ursolic acid may be considered a potential therapeutic agent for doxorubicin‐associated cardiac toxicity in clinical practice.  相似文献   
65.
The aim of the present studies was to determine whether the mechanism of biological action of garlic-derived sulfur compounds in human hepatoma (HepG2) cells can be dependent on the presence of labile sulfane sulfur in their molecules. We investigated the effect of allyl sulfides from garlic: monosulfide, disulfide and trisulfide on cell proliferation and viability, caspase 3 activity and hydrogen peroxide (H(2)O(2)) production in HepG2 cells. In parallel, we also examined the influence of the previously mentioned compounds on the levels of thiols, glutathione, cysteine and cysteinyl-glycine, and on the level of sulfane sulfur and the activity of its metabolic enzymes: rhodanese, 3-mercaptopyruvate sulfurtransferase and cystathionase. Among the compounds under study, diallyl trisulfide (DATS), a sulfane sulfur-containing compound, showed the highest biological activity in HepG2 cells. This compound increased the H(2)O(2) formation, lowered the thiol level and produced the strongest inhibition of cell proliferation and the greatest induction of caspase 3 activity in HepG2 cells. DATS did not affect the activity of sulfurtransferases and lowered sulfane sulfur level in HepG2 cells. It appears that sulfane sulfur containing DATS can be bioreduced in cancer cells to hydroperthiol that leads to H(2)O(2) generation, thereby influencing transmission of signals regulating cell proliferation and apoptosis.  相似文献   
66.
We have previously reported that Catharanthus roseus transformed roots contain at least two phosphatidylinositol 4,5-bisphosphate-phospholipase C (PLC) activities, one soluble and the other membrane associated. Detergent, divalent cations, and neomycin differentially regulate these activities and pure protein is required for a greater understanding of the function and regulation of this enzyme. In this article we report a partia purification of membrane-associated PLC. We found that there are at least two forms of membrane-associated PLC in transformed roots of C. roseus. These forms were separated on the basis of their affinity for heparin. One form shows an affinity for heparin and elutes at approx 600 mM KCl. This form has a molecular mass of 67 kDa by size exclusion chromatography and Western blot analysis, whereas the other form does not bind to heparin and has a molecular mass of 57 kDa. Possible differential regulation of these forms during transformed root growth is discussed.  相似文献   
67.
The photodynamic response of the anthraquinone anticancer drug aclarubicin (ACL) was investigated in vitro and compared with that of mitoxantrone (MTX). Cultured immortalized rodent B14 and NIH 3T3 cells were used in the experiments as a model for cells with neoplastic phenotype. Long-term cytotoxicity and inhibition of cell proliferation assayed by the clonal growth and MTT-tetrazolium methods were estimated to compare the efficacy of aclarubicin and mitoxantrone in photosensitizing cells and their death after non-thermal exposure to monochromatic laser light. Green He-Ne (543.5 nm) or red semiconductor (670 nm) low-power laser (LPL) irradiations were applied. Different dose-responses of both cell lines to aclarubicin and mitoxantrone were found so that the cytotoxicity of MTX was considerably greater than the cytotoxicity of ACL. Phototherapy response (P < 0.0001) was observed only for B14 cells after sensitisation with aclarubicin. Under the same conditions no significant effect of red light irradiation (semiconductor 670 nm laser) on survival of both cell lines treated with mitoxantrone was found.  相似文献   
68.
The effects of elevated CO2 and drought on ecophysiological parameters in grassland species have been examined, but few studies have investigated the effect of competition on those parameters under climate change conditions. The objective of this study was to determine the effect of elevated CO2 and drought on the response of plant water relations, gas exchange, chlorophyll a fluorescence and aboveground biomass in four grassland species, as well as to assess whether the type of competition modulates that response. Elevated CO2 in well‐watered conditions increased aboveground biomass by augmenting CO2 assimilation. Drought reduced biomass by reducing CO2 assimilation rate via stomatal limitation and, when drought was more severe, also non‐stomatal limitation. When plants were grown under the combined conditions of elevated CO2 and drought, drought limitation observed under ambient CO2 was reduced, permitting higher CO2 assimilation and consequently reducing the observed decrease in aboveground biomass. The response to climate change was species‐specific and dependent on the type of competition. Thus, the response to elevated CO2 in well‐watered grasses was higher in monoculture than in mixture, while it was higher in mixture compared to monoculture for forbs. On the other hand, forbs were more affected than grasses by drought in monoculture, while in mixture the negative effect of drought was higher in grasses than in forbs, due to a lower capacity to acquire water and mineral nutrients. These differences in species‐level growth responses to CO2 and drought may lead to changes in the composition and biodiversity of the grassland plant community in future climate conditions.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号