首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13357篇
  免费   1059篇
  国内免费   2篇
  14418篇
  2023年   69篇
  2022年   156篇
  2021年   270篇
  2020年   160篇
  2019年   192篇
  2018年   259篇
  2017年   253篇
  2016年   411篇
  2015年   668篇
  2014年   765篇
  2013年   923篇
  2012年   1253篇
  2011年   1159篇
  2010年   701篇
  2009年   620篇
  2008年   894篇
  2007年   929篇
  2006年   776篇
  2005年   757篇
  2004年   673篇
  2003年   638篇
  2002年   630篇
  2001年   110篇
  2000年   79篇
  1999年   105篇
  1998年   145篇
  1997年   88篇
  1996年   75篇
  1995年   70篇
  1994年   71篇
  1993年   71篇
  1992年   51篇
  1991年   48篇
  1990年   42篇
  1989年   26篇
  1988年   24篇
  1987年   24篇
  1986年   23篇
  1985年   15篇
  1984年   22篇
  1983年   19篇
  1982年   8篇
  1981年   17篇
  1980年   14篇
  1979年   10篇
  1978年   11篇
  1975年   8篇
  1971年   11篇
  1969年   8篇
  1966年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Glioblastoma multiforme (GBM) is an incurable form of brain cancer with a very poor prognosis. Because of its highly invasive nature, it is impossible to remove all tumor cells during surgical resection, making relapse inevitable. Further research into the regulatory mechanism underpinning GBM pathogenesis is therefore warranted, and over the past decade, there has been an increased focus on the functional role of microRNA (miRNA). This systematic review aims to present a comprehensive overview of all the available literature on the expression profiles and function of miRNA in GBM. Here, we have reviewed 163 papers and identified 253 upregulated, 95 downregulated, and 17 disputed miRNAs with respect to expression levels; 85 % of these miRNAs have not yet been functionally characterized. A focus in this study has been 26 interesting miRNAs involved in the mesenchymal mode of migration and invasion, demonstrating the importance of miRNAs in the context of the cellular niche. Both oncogenic and tumor-suppressive miRNAs were found to affect target genes involved in cell migration, cytoskeletal rearrangement, invasiveness, and angiogenesis. Clearly, the distinct functional properties of these miRNAs need further investigation and might hold a great potential in future molecular therapies targeting GBM.  相似文献   
82.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   
83.
Modified Look-Locker Inversion recovery (MOLLI) sequence is increasingly performed for myocardial T1 mapping but is known to underestimate T1 values. The aim of the study was to quantitatively analyze several sources of errors when T1 maps are derived using standard post-processing of the sequence and to propose a reconstruction approach that takes into account inversion efficacy (η), T2 relaxation during balanced steady-state free-precession readouts and B1+ inhomogeneities. Contributions of the different sources of error were analyzed using Bloch equations simulations of MOLLI sequence. Bloch simulations were then combined with the acquisition of fast B1+ and T2 maps to derive more accurate T1 maps. This novel approach was evaluated on phantoms and on five healthy volunteers. Simulations show that T2 variations, B1+ heterogeneities and inversion efficiency represent major confounders for T1 mapping when MOLLI is processed with standard 3-parameters fitting. In vitro data indicate that T1 values are accurately derived with the simulation approach and in vivo data suggest that myocardium T1 are 15% underestimated when processed with the standard 3-parameters fitting. At the cost of additional acquisitions, this method might be suitable in clinical research protocols for precise tissue characterization as it decorrelates T1 and T2 effects on parametric maps provided by MOLLI sequence and avoids inaccuracies when B1+ is not homogenous throughout the myocardium.  相似文献   
84.
Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems.  相似文献   
85.
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.  相似文献   
86.
The monogenetic disease Spinal Muscular Atrophy (SMA) is characterized by a progressive loss of motoneurons leading to muscle weakness and atrophy due to severe reduction of the Survival of Motoneuron (SMN) protein. Several models of SMA show deficits in neurite outgrowth and maintenance of neuromuscular junction (NMJ) structure. Survival of motoneurons, axonal outgrowth and formation of NMJ is controlled by neurotrophic factors such as the Fibroblast Growth Factor (FGF) system. Besides their classical role as extracellular ligands, some FGFs exert also intracellular functions controlling neuronal differentiation. We have previously shown that intracellular FGF-2 binds to SMN and regulates the number of a subtype of nuclear bodies which are reduced in SMA patients. In the light of these findings, we systematically analyzed the FGF-system comprising five canonical receptors and 22 ligands in a severe mouse model of SMA. In this study, we demonstrate widespread alterations of the FGF-system in both muscle and spinal cord. Importantly, FGF-receptor 1 is upregulated in spinal cord at a pre-symptomatic stage as well as in a mouse motoneuron-like cell-line NSC34 based model of SMA. Consistent with that, phosphorylations of FGFR-downstream targets Akt and ERK are increased. Moreover, ERK hyper-phosphorylation is functionally linked to FGFR-1 as revealed by receptor inhibition experiments. Our study shows that the FGF system is dysregulated at an early stage in SMA and may contribute to the SMA pathogenesis.  相似文献   
87.

Background

The flat-headed cat (Prionailurus planiceps) is one of the world''s least known, highly threatened felids with a distribution restricted to tropical lowland rainforests in Peninsular Thailand/Malaysia, Borneo and Sumatra. Throughout its geographic range large-scale anthropogenic transformation processes, including the pollution of fresh-water river systems and landscape fragmentation, raise concerns regarding its conservation status. Despite an increasing number of camera-trapping field surveys for carnivores in South-East Asia during the past two decades, few of these studies recorded the flat-headed cat.

Methodology/Principal Findings

In this study, we designed a predictive species distribution model using the Maximum Entropy (MaxEnt) algorithm to reassess the potential current distribution and conservation status of the flat-headed cat. Eighty-eight independent species occurrence records were gathered from field surveys, literature records, and museum collections. These current and historical records were analysed in relation to bioclimatic variables (WorldClim), altitude (SRTM) and minimum distance to larger water resources (Digital Chart of the World). Distance to water was identified as the key predictor for the occurrence of flat-headed cats (>50% explanation). In addition, we used different land cover maps (GLC2000, GlobCover and SarVision LLC for Borneo), information on protected areas and regional human population density data to extract suitable habitats from the potential distribution predicted by the MaxEnt model. Between 54% and 68% of suitable habitat has already been converted to unsuitable land cover types (e.g. croplands, plantations), and only between 10% and 20% of suitable land cover is categorised as fully protected according to the IUCN criteria. The remaining habitats are highly fragmented and only a few larger forest patches remain.

Conclusion/Significance

Based on our findings, we recommend that future conservation efforts for the flat-headed cat should focus on the identified remaining key localities and be implemented through a continuous dialogue between local stakeholders, conservationists and scientists to ensure its long-term survival. The flat-headed cat can serve as a flagship species for the protection of several other endangered species associated with the threatened tropical lowland forests and surface fresh-water sources in this region.  相似文献   
88.
89.
Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.  相似文献   
90.
The analysis of proteins in biological membranes forms a major challenge in proteomics. Despite continuous improvements and the development of more sensitive analytical methods, the analysis of membrane proteins has always been hampered by their hydrophobic properties and relatively low abundance. In this review, we describe recent successful strategies that have led to in-depth analyses of the membrane proteome. To facilitate membrane proteome analysis, it is essential that biochemical enrichment procedures are combined with special analytical workflows that are all optimized to cope with hydrophobic polypeptides. These include techniques for protein solubilization, and also well-matched developments in protein separation and protein digestion procedures. Finally, we discuss approaches to target membrane–protein complexes and lipid–protein interactions, as such approaches offer unique insights into function and architecture of cellular membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号