首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   4篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1993年   1篇
  1986年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1928年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
11.
12.
An inhibitor of microRNA-122 reduces viral load in chimpanzees that are chronically infected with hepatitis C virus, suggesting that such an approach might have therapeutic potential in humans.  相似文献   
13.
Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE). Yet, it remains unclear what the dominant blood cell type(s) and inflammation-related gene programs stimulated by lupus ICs are. To address these questions, we exposed normal human PBMCs or CD14(+) isolated monocytes to SLE ICs in the presence or absence of C1q and performed microarray analysis and other tests for cell activation. By microarray analysis, we identified genes and pathways regulated by SLE ICs that are both type I IFN dependent and independent. We also found that C1q-containing ICs markedly reduced expression of the majority of IFN-response genes and also influenced the expression of multiple other genes induced by SLE ICs. Surprisingly, IC activation of isolated CD14(+) monocytes did not upregulate CD40 and CD86 and only modestly stimulated inflammatory gene expression. However, when monocyte subsets were purified and analyzed separately, the low-abundance CD14(dim) ("patrolling") subpopulation was more responsive to ICs. These observations demonstrate the importance of plasmacytoid dendritic cells, CD14(dim) monocytes, and C1q as key regulators of inflammatory properties of ICs and identify many pathways through which they act.  相似文献   
14.
Microbial‐mediated decomposition of soil organic matter (SOM) ultimately makes a considerable contribution to soil respiration, which is typically the main source of CO2 arising from terrestrial ecosystems. Despite this central role in the decomposition of SOM, few studies have been conducted on how climate change may affect the soil microbial community and, furthermore, on how possible climate‐change induced alterations in the ecology of microbial communities may affect soil CO2 emissions. Here we present the results of a seasonal study on soil microbial community structure, SOM decomposition and its temperature sensitivity in two representative Mediterranean ecosystems where precipitation/throughfall exclusion has taken place during the last 10 years. Bacterial and fungal diversity was estimated using the terminal restriction fragment length polymorphism technique. Our results show that fungal diversity was less sensitive to seasonal changes in moisture, temperature and plant activity than bacterial diversity. On the other hand, fungal communities showed the ability to dynamically adapt throughout the seasons. Fungi also coped better with the 10 years of precipitation/throughfall exclusion compared with bacteria. The high resistance of fungal diversity to changes with respect to bacteria may open the controversy as to whether future ‘drier conditions’ for Mediterranean regions might favor fungal dominated microbial communities. Finally, our results indicate that the fungal community exerted a strong influence over the temporal and spatial variability of SOM decomposition and its sensitivity to temperature. The results, therefore, highlight the important role of fungi in the decomposition of terrestrial SOM, especially under the harsh environmental conditions of Mediterranean ecosystems, for which models predict even drier conditions in the future.  相似文献   
15.

Background

CCN2, (a.k.a. connective tissue growth factor and CTGF) has emerged as a regulator of cell migration. While the importance of CCN2 for the fibrotic process in wound healing has been well studied, the effect of CCN2 on keratinocyte function is not well understood. In this study, we investigated the mechanism behind CCN2-driven keratinocyte adhesion and migration.Materials and methods: Adhesion assays were performed by coating wells with 10 μg/ml fibronectin (FN) or phosphate-buffered saline (PBS). Keratinocytes were seeded in the presence or absence of 200 ng/ml CCN2, 5 mmol/l ethylenediaminetetraacetic acid, 10 mmol/l cations, 500 μl arginine–glycine–aspartic acid (RGD), 500 μM arginine–glycine–glutamate–serine (RGES), and 10 μg/ml anti-integrin blocking antibodies. Migration studies were performed using a modified Boyden chamber assay. Quantitative PCR was used to study the effect of CCN2 on integrin subunit mRNA expression. To block intracellular pathways, keratinocytes were pretreated with 20 μM PD98059 (MEK-1 inhibitor) or 20 μM PF573228 (FAK inhibitor) for 60 min prior the addition of CCN2. Western blot was used to measure CCN2, p-ERK1/2, and ERK1/2.Results: CCN2 enhanced keratinocyte adhesion to fibronectin via integrin α5β1. The addition of anti-integrin α5β1 antibodies reduced CCN2-mediated keratinocyte migration. In addition, CCN2 regulated mRNA and protein expression of integrin subunits α5 and β1. CCN2 activated the FAK-MAPK signaling pathway, and pretreatment with MEK1-specific inhibitor PD98059 markedly reduced CCN2-induced keratinocyte migration.Conclusions: Our results demonstrate that CCN2 enhances keratinocyte adhesion and migration through integrin α5β1 and activation of the FAK-MAPK signaling cascade.  相似文献   
16.
Halosalicylamide derivatives were identified from high-throughput screening as potent inhibitors of HCV NS5B polymerase. The subsequent structure and activity relationship revealed the absolute requirement of the salicylamide moiety for optimum activity. Methylation of either the hydroxyl group or the amide group of the salicylamide moiety abolished the activity while the substitutions on both phenyl rings are acceptable. The halosalicylamide derivatives were shown to be non-competitive with respect to elongation nucleotide and demonstrated broad genotype activity against genotype 1-3 HCV NS5B polymerases. Inhibitor competition studies indicated an additive binding mode to the initiation pocket that is occupied by the thiadiazine class of compounds and an additive binding mode to the elongation pocket that is occupied by diketoacids, but a mutually exclusive binding mode with respect to the allosteric thumb pocket that is occupied by the benzimidazole class of inhibitors. Therefore, halosalicylamides represent a novel class of allosteric inhibitors of HCV NS5B polymerase.  相似文献   
17.
Polar solvents induce terminal differentiation in the human promyelocytic leukemia cell line HL-60. The present studies describe the functional changes that accompany the morphologic progression from promyelocytes to bands and poly-morphonuclear leukocytes (PMN) over 9 d of culture in 1.3 percent dimethylsulfoxide (DMSO). As the HL-60 cells mature, the rate of O(2-) production increase 18-fold, with a progressive shortening of the lag time required for activation. Hexosemonophosphate shunt activity rises concomitantly. Ingestin of paraffin oil droplets opsonized with complement or Ig increases 10-fold over 9 d in DMSO. Latex ingestion per cell by each morphologic type does not change significantly, but total latex ingestion by groups of cells increases with the rise in the proportion of mature cells with greater ingestion capacities. Degranulation, as measured by release of β-glucuronidase, lysozyme, and peroxidase, reaches maximum after 3-6 d in DMSO, then declines. HL-60 cells contain no detectable lactoferrin, suggesting that their secondary granules are absent or defective. However, they kill staphylococci by day 6 in DMSO. Morphologically immature cells (days 1-3 in DMSO) are capable of O(2-) generation, hexosemonophosphate shunt activity, ingestion, degranulation, and bacterial killing. Maximal performance of each function by cells incubated in DMSO for longer periods of time is 50-100 percent that of normal PMN. DMSO- induced differentiation of HL-60 cells is a promising model for myeloid development.  相似文献   
18.
Nitrate and water stress were used to induce senescence in rootnodules of alfalfa (Medicago sativa L. cv. Aragon). Nodule senescencewas assessed by determinations of the nitrogenase (C2H2-reducing)activity, and the leghaemoglobin (LHb) and total soluble proteincontents of the nodules. Nodules responded similarly to and water stress in many respects, but there was a significant difference.All parameters of nodule activity, expressed on the basis ofnodule dry weight (DW), consistently decreased following treatmentwith or during drought; there was a significant interaction (synergism) between the inhibitory effects of and water stress on nitrogenase activity, but sucheffects were merely additive in the case of LHb content or LHb/solubleprotein ratio. However, caused the selective decay of LHb with respect to other nodular soluble proteins,whereas the decrease of LHb during water stress was due to ageneral inhibition of protein synthesis and to an increasedproteolytic activity in the nodule cytosol rather than to aspecific proteolysis of LHb. Key words: Leghaemoglobin, Medicago saliva, nitrogen fixation, root nodule senescence, water stress  相似文献   
19.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   
20.
A novel series of antimicrobials of the oxazolidinone class is disclosed. These compounds are characterized relative to previously described analogues by a 'halostilbene-derived' pharmacophore and demonstrate enhanced antimicrobial activity against key Gram-positive pathogens when compared to Linezolid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号