首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   21篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   2篇
  2018年   5篇
  2017年   7篇
  2016年   15篇
  2015年   24篇
  2014年   24篇
  2013年   24篇
  2012年   45篇
  2011年   43篇
  2010年   27篇
  2009年   18篇
  2008年   13篇
  2007年   16篇
  2006年   24篇
  2005年   11篇
  2004年   16篇
  2003年   8篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   8篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有379条查询结果,搜索用时 31 毫秒
151.
The spliceosomal protein Prp1 (Prp6/U5-102 K) is necessary for the integrity of pre-catalytic spliceosomal complexes. We have identified a novel regulatory function for Prp1. Expression of mutations in the N-terminus of Prp1 leads to the accumulation of pre-catalytic spliceosomal complexes containing the five snRNAs U1, U2, U5 and U4/U6 and pre-mRNAs. The mutations in the N-terminus, which prevent splicing to occur, include in vitro and in vivo identified phosphorylation sites of Prp4 kinase. These sites are highly conserved in the human ortholog U5-102 K. The results presented here demonstrate that structural integrity of the N-terminus is required to mediate a splicing event, but is not necessary for the assembly of spliceosomes.  相似文献   
152.
As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant‐based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG‐inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect–plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild‐type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP‐deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.  相似文献   
153.
154.
155.
156.
Phytochrome A (phyA) is the only photoreceptor in plants, initiating responses in far-red light and, as such, essential for survival in canopy shade. Although the absorption and the ratio of active versus total phyA are maximal in red light, far-red light is the most efficient trigger of phyA-dependent responses. Using a joint experimental-theoretical approach, we unravel the mechanism underlying this shift of the phyA action peak from red to far-red light and show that it relies on specific molecular interactions rather than on intrinsic changes to phyA's spectral properties. According to our model, the dissociation rate of the phyA-FHY1/FHL nuclear import complex is a principle determinant of the phyA action peak. The findings suggest how higher plants acquired the ability to sense far-red light from an ancestral photoreceptor tuned to respond to red light.  相似文献   
157.
158.
Chromosomal DNA replication requires the spatial and temporal coordination of the activities of several complexes that constitute the replisome. A previously uncharacterized protein, encoded by TK1252 in the archaeon Thermococcus kodakaraensis, was shown to stably interact with the archaeal GINS complex in vivo, a central component of the archaeal replisome. Here, we document that this protein (TK1252p) is a processive, single-strand DNA-specific exonuclease that degrades DNA in the 5' → 3' direction. TK1252p binds specifically to the GINS15 subunit of T. kodakaraensis GINS complex and this interaction stimulates the exonuclease activity in vitro. This novel archaeal nuclease, designated GINS-associated nuclease (GAN), also forms a complex in vivo with the euryarchaeal-specific DNA polymerase D. Roles for GAN in replisome assembly and DNA replication are discussed.  相似文献   
159.
The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12-48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.  相似文献   
160.
Palaeoecology may contribute to the debate on nature conservation and the preservation of cultural heritage. Here we present two palaeo-records from the Lore Lindu Biosphere Reserve and National Park in central Sulawesi, Indonesia. The park comprises one of the largest remaining and most biodiverse mountain forests of Sulawesi. Outstanding megalithic sites reveal long-term human impact on the area. Thus, modern vegetation composition within the park has been determined by complex site histories, natural and anthropogenic. Palaeo-records from sites between 1,000 and 1,400 m a.s.l. demonstrate that human activity as well as climate variations have to be considered as the main drivers of vegetation changes in the region for the last 2,000 years. Human impact is reflected by large amounts of charred fragments in the pollen records plus low values of arboreal pollen resulting from forest clearance. The stratigraphy of one of the pollen records shows effects of a general cooling trend during the Little Ice Age (LIA). Biomass loss due to the conversion of lower montane rainforest to grassland has reduced the carbon storage potential in the area of the Lore Lindu Park. Recommendations for conservation policy that may be made from the environmental history within the biosphere reserve thus include the consideration of human influence in easily accessible areas, particularly in face of recent settlement intensification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号