首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   22篇
  439篇
  2023年   3篇
  2022年   6篇
  2021年   11篇
  2020年   7篇
  2019年   2篇
  2018年   5篇
  2017年   8篇
  2016年   16篇
  2015年   26篇
  2014年   24篇
  2013年   27篇
  2012年   50篇
  2011年   50篇
  2010年   29篇
  2009年   21篇
  2008年   15篇
  2007年   16篇
  2006年   30篇
  2005年   14篇
  2004年   20篇
  2003年   12篇
  2002年   12篇
  2001年   7篇
  2000年   3篇
  1999年   7篇
  1998年   8篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有439条查询结果,搜索用时 10 毫秒
171.
Biofilm formation by Pseudomonas fluorescens Pf0-1 requires the cell surface adhesin LapA. We previously reported that LapG, a periplasmic cysteine protease of P. fluorescens, cleaves the N terminus of LapA, thus releasing this adhesin from the cell surface and resulting in loss of the ability to make a biofilm. The activity of LapG is regulated by the inner membrane-localized cyclic-di-GMP receptor LapD via direct protein-protein interactions. Here we present chelation and metal add-back studies demonstrating that calcium availability regulates biofilm formation by P. fluorescens Pf0-1. The determination that LapG is a calcium-dependent protease, based on in vivo and in vitro studies, explains the basis of this calcium-dependent regulation. Based on the crystal structure of LapG of Legionella pneumophila in the accompanying report by Chatterjee and colleagues (D. Chatterjee et al., J. Bacteriol. 194:4415-4425, 2012), we show that the calcium-binding residues of LapG, D134 and E136, which are near the critical C135 active-site residue, are required for LapG activity of P. fluorescens in vivo and in vitro. Furthermore, we show that mutations in D134 and E136 result in LapG proteins no longer able to interact with LapD, indicating that calcium binding results in LapG adopting a conformation competent for interaction with the protein that regulates its activity. Finally, we show that citrate, an environmentally relevant calcium chelator, can impact LapG activity and thus biofilm formation, suggesting that a physiologically relevant chelator of calcium can impact biofilm formation by this organism.  相似文献   
172.
The specific aminoacylation of the phospholipid phosphatidylglycerol (PG) with alanine or with lysine catalyzed by aminoacyl-phosphatidylglycerol synthases (aaPGS) was shown to render various organisms less susceptible to antibacterial agents. This study makes use of Pseudomonas aeruginosa chimeric mutant strains producing lysyl-phosphatidylglycerol (L-PG) instead of the naturally occurring alanyl-phosphatidylglycerol (A-PG) to study the resulting impact on bacterial resistance. Consequences of such artificial phospholipid composition were studied in the presence of an overall of seven antimicrobials (β-lactams, a lipopeptide antibiotic, cationic antimicrobial peptides [CAMPs]) to quantitatively assess the effect of A-PG substitution (with L-PG, L-PG and A-PG, increased A-PG levels). For the employed Gram-negative P. aeruginosa model system, an exclusive charge repulsion mechanism does not explain the attenuated antimicrobial susceptibility due to PG modification. Additionally, the specificity of nine orthologous aaPGS enzymes was experimentally determined. The newly characterized protein sequences allowed for the establishment of a significant group of A-PG synthase sequences which were bioinformatically compared to the related group of L-PG synthesizing enzymes. The analysis revealed a diverse origin for the evolution of A-PG and L-PG synthases, as the specificity of an individual enzyme is not reflected in terms of a characteristic sequence motif. This finding is relevant for future development of potential aaPGS inhibitors.  相似文献   
173.
174.
The spliceosomal protein Prp1 (Prp6/U5-102 K) is necessary for the integrity of pre-catalytic spliceosomal complexes. We have identified a novel regulatory function for Prp1. Expression of mutations in the N-terminus of Prp1 leads to the accumulation of pre-catalytic spliceosomal complexes containing the five snRNAs U1, U2, U5 and U4/U6 and pre-mRNAs. The mutations in the N-terminus, which prevent splicing to occur, include in vitro and in vivo identified phosphorylation sites of Prp4 kinase. These sites are highly conserved in the human ortholog U5-102 K. The results presented here demonstrate that structural integrity of the N-terminus is required to mediate a splicing event, but is not necessary for the assembly of spliceosomes.  相似文献   
175.
176.
Modern biotechnology has developed powerful tools for genetic engineering and flower colours are an excellent object to study possibilities and limitations of engineering strategies. Osteospermum hybrida became a popular ornamental plant within the last 20 years. Many cultivars display rose to lilac flower colours mainly based on delphinidin-derived anthocyanins. The predominant synthesis of delphinidin derivatives is referred to a strong endogenous flavonoid 3',5'-hydroxylase (F3'5'H) activity. Furthermore, since dihydroflavonol 4-reductase (DFR) of Osteospermum does not convert dihydrokaempferol (DHK) to leucopelargonidin, synthesis of pelargonidin-based anthocyanins is naturally not realised. In order to redirect anthocyanin biosynthesis in Osteospermum towards pelargonidin derivatives, we introduced cDNAs coding for DFRs which efficiently convert DHK to LPg. But neither the expression of Gerbera hybrida DFR nor of Fragaria x ananassa DFR - the latter is characterised by an unusual high substrate preference for DHK - altered anthocyanin composition in flowers of transgenic plants. However, chemical inhibition of F3'5'H activity in ray florets of dfr transgenic plants resulted in the accumulation of pelargonidin derivatives. Accordingly, retransformation of a transgenic plant expressing Gerbera DFR with a construct for RNAi-mediated suppression of F3'5'H activity resulted in double transgenic plants accumulating predominantly pelargonidin derivatives in flowers.  相似文献   
177.
The enterohepatic Helicobacter species Helicobacter hepaticus colonizes the murine intestinal and hepatobiliary tract and is associated with chronic intestinal inflammation, gall stone formation, hepatitis, and hepatocellular carcinoma. Thus far, the role of H. hepaticus motility and flagella in intestinal colonization is unknown. In other, closely related bacteria, late flagellar genes are mainly regulated by the sigma factor FliA (σ28). We investigated the function of the H. hepaticus FliA in gene regulation, flagellar biosynthesis, motility, and murine colonization. Competitive microarray analysis of the wild type versus an isogenic fliA mutant revealed that 11 genes were significantly more highly expressed in wild-type bacteria and 2 genes were significantly more highly expressed in the fliA mutant. Most of these were flagellar genes, but four novel FliA-regulated genes of unknown function were identified. H. hepaticus possesses two identical copies of the gene encoding the FliA-dependent major flagellin subunit FlaA (open reading frames HH1364 and HH1653). We characterized the phenotypes of mutants in which fliA or one or both copies of the flaA gene were knocked out. flaA_1 flaA_2 double mutants and fliA mutants did not synthesize detectable amounts of FlaA and possessed severely truncated flagella. Also, both mutants were nonmotile and unable to colonize mice. Mutants with either flaA gene knocked out produced flagella morphologically similar to those of wild-type bacteria and expressed FlaA and FlaB. flaA_1 mutants which had flagella but displayed reduced motility did not colonize mice, indicating that motility is required for intestinal colonization by H. hepaticus and that the presence of flagella alone is not sufficient.  相似文献   
178.

Aim

Several large-mammal species in Europe have recovered and recolonized parts of their historical ranges. Knowing where suitable habitat exists, and thus where range expansions are possible, is important for proactively promoting coexistence between people and large mammals in shared landscapes. We aimed to assess the opportunities and limitations for range expansions of Europe's two largest herbivores, the European bison (Bison bonasus) and moose (Alces alces).

Location

Central Europe.

Methods

We used large occurrence datasets from multiple populations and species distribution models to map environmentally suitable habitats for European bison and moose across Central Europe, and to assess human pressure inside the potential habitat. We then used circuit theory modeling to identify potential recolonization corridors.

Results

We found widespread suitable habitats for both European bison (>120,000 km2) and moose (>244,000 km2), suggesting substantial potential for range expansions. However, much habitat was associated with high human pressure (37% and 43% for European bison and moose, respectively), particularly in the west of Central Europe. We identified a strong east–west gradient of decreasing connectivity, with major barriers likely limiting natural recolonization in many areas.

Main conclusions

We identify major potential for restoring large herbivores and their functional roles in Europe's landscapes. However, we also highlight considerable challenges for conservation planning and wildlife management, including areas where recolonization likely leads to human–wildlife conflict and where barriers to movement prevent natural range expansion. Conservation measures restoring broad-scale connectivity are needed in order to allow European bison and moose to recolonize their historical ranges. Finally, our analyses and maps indicate suitable but isolated habitat patches that are unlikely to be colonized but are candidate locations for reintroductions to establish reservoir populations. More generally, our work emphasizes that transboundary cooperation is needed for restoring large herbivores and their ecological roles, and to foster coexistence with people in Europe's landscapes.  相似文献   
179.
As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant‐based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG‐inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect–plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild‐type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP‐deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号