首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   762篇
  免费   56篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   9篇
  2019年   4篇
  2018年   12篇
  2017年   9篇
  2016年   23篇
  2015年   36篇
  2014年   43篇
  2013年   40篇
  2012年   62篇
  2011年   62篇
  2010年   37篇
  2009年   30篇
  2008年   38篇
  2007年   34篇
  2006年   35篇
  2005年   29篇
  2004年   39篇
  2003年   26篇
  2002年   20篇
  2001年   11篇
  2000年   13篇
  1999年   18篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   9篇
  1994年   3篇
  1992年   16篇
  1991年   11篇
  1990年   5篇
  1989年   8篇
  1988年   8篇
  1987年   3篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1979年   8篇
  1978年   5篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1973年   3篇
  1937年   4篇
  1922年   3篇
排序方式: 共有818条查询结果,搜索用时 31 毫秒
91.
The galactomannan (GM) Enzyme Immunoassay (EIA) is an upcoming tool not only for diagnosis but also monitoring of invasive Aspergillosis (IA). Various studies were performed over the last years to apply such a promising instrument correctly. New findings show the potential of this test to segregate affected patients into treatment responders and non-responders at a time point as early as 7–14 days after initiation of antifungal therapy. Current data suggest that serial GM testing in patients receiving antifungal therapy for IA is essential as GMI kinetics may offer the clinician a substantial support in decision making concerning early therapeutic stratifications. The correct interpretation of GM EIA results with respect to the individual context of the patient is, however, absolutely necessary. The following review shall give an overview about the GM-EIA as a tool for IA monitoring and therapy stratification.  相似文献   
92.
The human hereditary disease Fanconi anemia leads to severe symptoms, including developmental defects and breakdown of the hematopoietic system. It is caused by single mutations in the FANC genes, one of which encodes the DNA translocase FANCM (for Fanconi anemia complementation group M), which is required for the repair of DNA interstrand cross-links to ensure replication progression. We identified a homolog of FANCM in Arabidopsis thaliana that is not directly involved in the repair of DNA lesions but suppresses spontaneous somatic homologous recombination via a RecQ helicase (At-RECQ4A)-independent pathway. In addition, it is required for double-strand break-induced homologous recombination. The fertility of At-fancm mutant plants is compromised. Evidence suggests that during meiosis At-FANCM acts as antirecombinase to suppress ectopic recombination-dependent chromosome interactions, but this activity is antagonized by the ZMM pathway to enable the formation of interference-sensitive crossovers and chromosome synapsis. Surprisingly, mutation of At-FANCM overcomes the sterility phenotype of an At-MutS homolog4 mutant by apparently rescuing a proportion of crossover-designated recombination intermediates via a route that is likely At-MMS and UV sensitive81 dependent. However, this is insufficient to ensure the formation of an obligate crossover. Thus, At-FANCM is not only a safeguard for genome stability in somatic cells but is an important factor in the control of meiotic crossover formation.  相似文献   
93.
94.
Notch signaling controls fundamental aspects of angiogenic blood vessel growth including the selection of sprouting tip cells, endothelial proliferation and arterial differentiation. The E3 ubiquitin ligase Fbxw7 is part of the SCF protein complex responsible for the polyubiquitination and thereby proteasomal degradation of substrates such as Notch, c-Myc and c-Jun. Here, we show that Fbxw7 is a critical regulator of angiogenesis in the mouse retina and the zebrafish embryonic trunk, which we attribute to its role in the degradation of active Notch. Growth of retinal blood vessel was impaired and the Notch ligand Dll4, which is also a Notch target, upregulated in inducible and endothelial cell-specific Fbxw7(iECKO) mutant mice. The stability of the cleaved and active Notch intracellular domain was increased after siRNA knockdown of the E3 ligase in cultured human endothelial cells. Injection of fbxw7 morpholinos interfered with the sprouting of zebrafish intersegmental vessels (ISVs). Arguing strongly that Notch and not other Fbxw7 substrates are primarily responsible for these phenotypes, the genetic inactivation of Notch pathway components reversed the impaired ISV growth in the zebrafish embryo as well as sprouting and proliferation in the mouse retina. Our findings establish that Fbxw7 is a potent positive regulator of angiogenesis that limits the activity of Notch in the endothelium of the growing vasculature.  相似文献   
95.
Understanding the relationship between genetic and phenotypic variation is one of the great outstanding challenges in biology. To meet this challenge, comprehensive genomic variation maps of human as well as of model organism populations are required. Here, we present a nucleotide resolution catalog of single-nucleotide, multi-nucleotide, and structural variants in 39 Drosophila melanogaster Genetic Reference Panel inbred lines. Using an integrative, local assembly-based approach for variant discovery, we identify more than 3.6 million distinct variants, among which were more than 800,000 unique insertions, deletions (indels), and complex variants (1 to 6,000 bp). While the SNP density is higher near other variants, we find that variants themselves are not mutagenic, nor are regions with high variant density particularly mutation-prone. Rather, our data suggest that the elevated SNP density around variants is mainly due to population-level processes. We also provide insights into the regulatory architecture of gene expression variation in adult flies by mapping cis-expression quantitative trait loci (cis-eQTLs) for more than 2,000 genes. Indels comprise around 10% of all cis-eQTLs and show larger effects than SNP cis-eQTLs. In addition, we identified two-fold more gene associations in males as compared to females and found that most cis-eQTLs are sex-specific, revealing a partial decoupling of the genomic architecture between the sexes as well as the importance of genetic factors in mediating sex-biased gene expression. Finally, we performed RNA-seq-based allelic expression imbalance analyses in the offspring of crosses between sequenced lines, which revealed that the majority of strong cis-eQTLs can be validated in heterozygous individuals.  相似文献   
96.
We present a new approach to surface plasmon microscopy with high refractive index sensitivity and spatial resolution that is not limited by the propagation length of surface plasmons. It is based on a nanostructured metallic sensor surface supporting Bragg-scattered surface plasmons. We show that these non-propagating surface plasmon modes are excellently suited for spatially resolved observations of refractive index variations on the sensor surface owing to their highly confined field profile perpendicular to as well as parallel to the metal interface. The presented theoretical study reveals that this approach enables reaching similar refractive index sensitivity as regular surface plasmon resonance (SPR) microscopy and offers the advantage of improved spatial resolution when observing dielectric features with lateral size <10???m for the wavelength around 800?nm and gold as the SPR-active metal. This paper demonstrates the potential of Bragg-scattered surface plasmon microscopy for high-throughput SPR biosensing with high-density microarrays.  相似文献   
97.
QTL analysis of early-season cold tolerance in sorghum   总被引:1,自引:0,他引:1  
Cool temperatures during the early-growing season are a major limitation to growing sorghum [Sorghum bicolor (L.) Moench] in temperate areas. Several landraces from China have been found to exhibit higher emergence and greater seedling vigor under cool conditions than most breeding lines currently available, but tend to lack desirable agronomic characteristics. The introgression of desirable genes from Chinese landraces into elite lines could be expedited by marker-assisted selection. Using a population of 153 RI lines, developed from a cross between Chinese landrace ‘Shan Qui Red,’ (SQR, cold-tolerant) and SRN39 (cold-sensitive), QTL associated with early-season performance under both cold and optimal conditions were identified by single marker analysis, simple interval mapping (SIM), and composite interval mapping (CIM). Germination was observed under controlled conditions, and other traits were measured in field plantings. Two QTL for germination were identified: one on linkage group SBI-03a, derived from SRN39, was significant under cold and optimal temperatures. The other, on group SBI-07b, showed greater significance under cold temperatures and was contributed by SQR. A region of group SBI-01a, derived from SQR, showed strong associations with seedling emergence and seedling vigor scores under early and late field plantings. A QTL for both early and late emergence was identified by CIM on SBI-02 which favored the SRN39 allele. SIM identified a QTL for early vigor on SBI-04 favoring the SQR genotype. Further studies are needed to validate the effects of these QTL, but they represent the first step in development of a marker-assisted breeding effort to improve early-season performance in sorghum.  相似文献   
98.
Cyclooxygenase-2 (COX-2)-dependent prostaglandin (PG) E(2) synthesis in the spinal cord plays a major role in the development of inflammatory hyperalgesia and allodynia. Microsomal PGE(2) synthase-1 (mPGES-1) isomerizes COX-2-derived PGH(2) to PGE(2). Here, we evaluated the effect of mPGES-1-deficiency on the nociceptive behavior in various models of nociception that depend on PGE(2) synthesis. Surprisingly, in the COX-2-dependent zymosan-evoked hyperalgesia model, the nociceptive behavior was not reduced in mPGES-1-deficient mice despite a marked decrease of the spinal PGE(2) synthesis. Similarly, the nociceptive behavior was unaltered in mPGES-1-deficient mice in the formalin test. Importantly, spinal cords and primary spinal cord cells derived from mPGES-1-deficient mice showed a redirection of the PGE(2) synthesis to PGD(2), PGF(2alpha) and 6-keto-PGF(1alpha) (stable metabolite of PGI(2)). Since the latter prostaglandins serve also as mediators of nociception they may compensate the loss of PGE(2) synthesis in mPGES-1-deficient mice.  相似文献   
99.
Sphingosine 1-Phosphate (S1P) modulates various cellular functions such as apoptosis, cell differentiation, and migration. Although S1P is an abundant signaling molecule in the central nervous system, very little is known about its influence on neuronal functions. We found that S1P concentrations were selectively decreased in the cerebrospinal fluid of adult rats in an acute and an inflammatory pain model. Pharmacological inhibition of sphingosine kinases (SPHK) decreased basal pain thresholds and SphK2 knock-out mice, but not SphK1 knock-out mice, had a significant decrease in withdrawal latency. Intrathecal application of S1P or sphinganine 1-phosphate (dihydro-S1P) reduced the pain-related (nociceptive) behavior in the formalin assay. S1P and dihydro-S1P inhibited cyclic AMP (cAMP) synthesis, a key second messenger of spinal nociceptive processing, in spinal cord neurons. By combining fluorescence resonance energy transfer (FRET)-based cAMP measurements with Multi Epitope Ligand Cartography (MELC), we showed that S1P decreased cAMP synthesis in excitatory dorsal horn neurons. Accordingly, intrathecal application of dihydro-S1P abolished the cAMP-dependent phosphorylation of NMDA receptors in the outer laminae of the spinal cord. Taken together, the data show that S1P modulates spinal nociceptive processing through inhibition of neuronal cAMP synthesis.  相似文献   
100.
In the tissue integration of melanocytes and melanoma cells, an important role is attributed to cell adhesion molecules, notably the cadherins. In cultured melanoma cells, we have previously described a more heterogeneous repertoire of cadherins than normal, including some melanoma subtypes synthesizing the desmosomal cadherin, desmoglein 2, out of the desmosomal context. Using biochemical and immunological characterization of junctional molecules, confocal laser scanning, and electron and immunoelectron microscopy, we now demonstrate homo- and heterotypic cell-cell adhesions of normal epidermal melanocytes. In human epidermis, both in situ and in cell culture, melanocytes and keratinocytes are connected by closely aligned membranes that are interspersed by small puncta adhaerentia containing heterotypic complexes of E- and P-cadherin. Moreover, melanocytes growing in culture often begin to synthesize desmoglein 2, which is dispersed over extended areas of intimate adhesive cell-cell associations. As desmoglein 2 is not found in melanocytes in situ, we hypothesize that its synthesis is correlated with cell proliferation. Indeed, in tissue microarrays, desmoglein 2 has been demonstrated in a sizable subset of nevi and primary melanomas. The biological meanings of these cell-cell adhesion molecule arrangements, the possible diagnostic and prognostic significance of these findings, and the implications of the heterogeneity types of melanomas are discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported in parts by grants from the Deutsche Forschungsgemeinschaft to W. K. Peitsch (project PE 896/1) and the Deutsche Krebshilfe to W. W. Franke (project 10-2049).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号