首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   75篇
  2022年   13篇
  2021年   13篇
  2020年   7篇
  2019年   17篇
  2018年   21篇
  2017年   10篇
  2016年   24篇
  2015年   49篇
  2014年   41篇
  2013年   39篇
  2012年   53篇
  2011年   53篇
  2010年   38篇
  2009年   23篇
  2008年   45篇
  2007年   29篇
  2006年   31篇
  2005年   29篇
  2004年   23篇
  2003年   21篇
  2002年   11篇
  2001年   20篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1996年   7篇
  1995年   5篇
  1993年   6篇
  1992年   11篇
  1991年   8篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1980年   3篇
  1979年   6篇
  1978年   10篇
  1977年   9篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   9篇
  1972年   8篇
  1970年   4篇
  1969年   5篇
排序方式: 共有822条查询结果,搜索用时 31 毫秒
41.
Sex determination in the mammalian embryo begins with the activation of a gene on the Y chromosome which triggers a cascade of events that lead to male development. The mechanism by which this gene, designated SRY in humans and Sry in mice (sex determining region of the Y chromosome), is activated remains unknown. Likewise, the downstream target genes for Sry remain unidentified at present. C57BL mice carrying a Y chromosome from Mus musculus musculus or molossinus develop normally as males. In contrast, C57BL/6 mice with the Y chromosome from M. m. domesticus often show sex reversal, i.e., develop as XY females. It has been documented that C57BL mice with the Y chromosome from Poschiavinus (YPOS), a domesticus subtype, always develop as females or hermaphrodites. This suggests that a C57BL gene either up- or downstream of Sry is ineffective in interacting with Sry, which then compromises the processes that lead to normal male sex development. Nonetheless, by selective breeding, we have been able to generate a sex reversal-resistant C57BL/6-congenic strain of mice in which the XYPOS individuals consistently develop as normal males with bilateral testes. Because the resistance to sex reversal was transferred from strain 129S1/Sv (nonalbino) by simple selection over 13 backcross generations, it is inferred that a single autosomal gene or chromosomal region confers resistance to the sex reversal that would otherwise result. XYPOS normal males generated in these crosses were compared to XYPOS abnormal individuals and to C57BL/6 controls for sexual phenotype, gonadal weight, serum testosterone, and major urinary protein (MUP) level. A clear correlation was found among phenotypic sex, MUP level, and testis weight in the males and in the incompletely masculinized XYPOS mice. The fully masculinized males of the congenic strain resemble C57BL/6 males in the tested parameters. DNA analysis confirmed that these males, in fact, carry the YPOS Sry gene.  相似文献   
42.
The hematology of the laboratory mouse has beenwell characterized. Normal genetic differences at thealpha- and beta-globin gene loci serve as useful markersfor a wide variety of types of experimental studies. There are a number of naturallyoccurring or induced mutations that disrupt globinexpression and produce thalassemic phenotypes. Inaddition, much has been learned of the workings of theglobin locus control region from studies of transgenicmice, including those with mutations induced by targetedsite-specific modifications. After a new mutation ortransgene has been created, it must be maintained in living mice, and the genotypes of theoffspring must be ascertained. While it is possible todetermine genotypes by DNA analyses, such assays aretime consuming and relatively expensive. An osmoticchallenge test -- originally developed for thegenotyping of large-deletion alpha-thalassemia mutationsin mice -- has proven useful in detecting bothsevere and milder alpha- and beta-thalassemias, as wellas some transgenic genotypes in mice carrying human globin genes.Reliable genotyping can, in some cases, be completedwithin a few minutes with minimal expense.Quantification of red cell fragility for a variety ofthalassemic and transgenic mice is described here, alongwith a simplified test suitable for rapid, routinegenotyping. The osmotic challenge test is perfectlyreliable for distinguishing genotypes that causesignificantly decreased release of hemoglobin from the redcells, but it is also useful for some of the conditionsin which overall erythrocyte osmotic fragility isessentially normal.  相似文献   
43.
44.

Background

Menopausal hormone therapy (MHT) reportedly increases the risk of cognitive decline in women over age 65 y. It is unknown whether similar risks exist for recently postmenopausal women, and whether MHT affects mood in younger women. The ancillary Cognitive and Affective Study (KEEPS-Cog) of the Kronos Early Estrogen Prevention Study (KEEPS) examined the effects of up to 4 y of MHT on cognition and mood in recently postmenopausal women.

Methods and Findings

KEEPS, a randomized, double-blinded, placebo-controlled clinical trial, was conducted at nine US academic centers. Of the 727 women enrolled in KEEPS, 693 (95.3%) participated in the ancillary KEEPS-Cog, with 220 women randomized to receive 4 y of 0.45 mg/d oral conjugated equine estrogens (o-CEE) plus 200 mg/d micronized progesterone (m-P) for the first 12 d of each month, 211 women randomized to receive 50 μg/d transdermal estradiol (t-E2) plus 200 mg/d m-P for the first 12 d of each month, and 262 women randomized to receive placebo pills and patches. Primary outcomes included the Modified Mini-Mental State examination; four cognitive factors: verbal learning/memory, auditory attention/working memory, visual attention/executive function, and speeded language/mental flexibility; and a mood measure, the Profile of Mood States (POMS). MHT effects were analyzed using linear mixed-effects (LME) models, which make full use of all available data from each participant, including those with missing data. Data from those with and without full data were compared to assess for potential biases resulting from missing observations. For statistically significant results, we calculated effect sizes (ESs) to evaluate the magnitude of changes.On average, participants were 52.6 y old, and 1.4 y past their last menstrual period. By month 48, 169 (24.4%) and 158 (22.8%) of the 693 women who consented for ancillary KEEPS-Cog were lost to follow-up for cognitive assessment (3MS and cognitive factors) and mood evaluations (POMS), respectively. However, because LME models make full use all available data, including data from women with missing data, 95.5% of participants were included in the final analysis (n = 662 in cognitive analyses, and n = 661 in mood analyses). To be included in analyses, women must have provided baseline data, and data from at least one post-baseline visit. The mean length of follow-up was 2.85 y (standard deviation [SD] = 0.49) for cognitive outcomes and 2.76 (SD = 0.57) for mood outcomes. No treatment-related benefits were found on cognitive outcomes. For mood, model estimates indicated that women treated with o-CEE showed improvements in depression and anxiety symptoms over the 48 mo of treatment, compared to women on placebo. The model estimate for the depression subscale was −5.36 × 10−2 (95% CI, −8.27 × 10−2 to −2.44 × 10−2; ES = 0.49, p < 0.001) and for the anxiety subscale was −3.01 × 10−2 (95% CI, −5.09 × 10−2 to −9.34 × 10−3; ES = 0.26, p < 0.001). Mood outcomes for women randomized to t-E2 were similar to those for women on placebo. Importantly, the KEEPS-Cog results cannot be extrapolated to treatment longer than 4 y.

Conclusions

The KEEPS-Cog findings suggest that for recently postmenopausal women, MHT did not alter cognition as hypothesized. However, beneficial mood effects with small to medium ESs were noted with 4 y of o-CEE, but not with 4 y of t-E2. The generalizability of these findings is limited to recently postmenopausal women with low cardiovascular risk profiles.

Trial Registration

ClinicalTrials.gov NCT00154180 and NCT00623311  相似文献   
45.
Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations.  相似文献   
46.
47.
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease.  相似文献   
48.
49.
Two pectate lyases were identified from Paenibacillus amylolyticus 27C64; both enzymes demonstrated activity on methylated pectin in addition to polygalacturonic acid. PelA is in a subclass of the pectate lyase family III. PelB shows some features of pectate lyase family I but is highly divergent.Pectinases have many industrial applications, including uses in food and textile production (9, 12). Additionally, pectinases are important for the degradation of biomass, where pectin can comprise a significant portion of plant structure (5, 6). The degradation of pectin requires methylesterases and depolymerases. Pectin methylesterases are responsible for the hydrolysis of methylester linkages from the polygalacturonic acid (PGA) backbone (24), while pectin depolymerases act upon the polygalacturonate backbone and belong to one of two families, polygalacturonases or lyases. Polygalacturonases hydrolytically cleave the polygalacturonate chain, while lyases cleave by β-elimination, giving a Δ4,5-unsaturated product (10, 19). There are two types of lyases: pectate lyases (PLs), which cleave unesterified polygalacturonate, and pectin lyases, which cleave methylesterified pectin.Paenibacillus amylolyticus strain 27C64, isolated from the larval hindgut of the aquatic crane fly, Tipula abdominalis, possesses a wide range of lignocellulose-degrading enzymes. This study describes two pectate lyases from P. amylolyticus that display unusual activity by combining traits of pectate and pectin lyases (2, 7, 21, 22).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号