首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   75篇
  2022年   13篇
  2021年   13篇
  2020年   7篇
  2019年   17篇
  2018年   21篇
  2017年   10篇
  2016年   24篇
  2015年   49篇
  2014年   41篇
  2013年   39篇
  2012年   53篇
  2011年   53篇
  2010年   38篇
  2009年   23篇
  2008年   45篇
  2007年   29篇
  2006年   31篇
  2005年   29篇
  2004年   23篇
  2003年   21篇
  2002年   11篇
  2001年   20篇
  2000年   10篇
  1999年   8篇
  1998年   4篇
  1996年   7篇
  1995年   5篇
  1993年   6篇
  1992年   11篇
  1991年   8篇
  1990年   7篇
  1989年   6篇
  1988年   5篇
  1987年   8篇
  1986年   4篇
  1985年   9篇
  1984年   10篇
  1983年   4篇
  1982年   5篇
  1980年   3篇
  1979年   6篇
  1978年   10篇
  1977年   9篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   9篇
  1972年   8篇
  1970年   4篇
  1969年   5篇
排序方式: 共有822条查询结果,搜索用时 265 毫秒
31.
32.
33.
Sustained positive BOLD (blood oxygen level-dependent) activity is employed extensively in functional magnetic resonance imaging (fMRI) studies as evidence for task or stimulus-specific neural responses. However, the presence of sustained negative BOLD activity (i.e., sustained responses that are lower than the fixation baseline) has remained more difficult to interpret. Some studies suggest that it results from local "blood stealing" wherein blood is diverted to neurally active regions without a concomitant change of neural activity in the negative BOLD regions. However, other evidence suggests that negative BOLD is a result of local neural suppression. In both cases, regions of negative BOLD response are usually interpreted as carrying relatively little, if any, stimulus-specific information (hence the predominant reliance on positive BOLD activity in fMRI). Here we show that the negative BOLD response resulting from visual stimulation can carry high information content that is stimulus-specific. Using a general linear model (GLM), we contrasted standard flickering stimuli to a fixation baseline and found regions of the visual cortex that displayed a sustained negative BOLD response, consistent with several previous studies. Within these negative BOLD regions, we compared patterns of fMRI activity generated by flickering Gabors that were systematically shifted in position. As the Gabors were shifted further from each other, the correlation in the spatial pattern of activity across a population of voxels (such as the population of V1 voxels that displayed a negative BOLD response) decreased significantly. Despite the fact that the BOLD signal was significantly negative (lower than fixation baseline), these regions were able to discriminate objects separated by less than 0.5 deg (at approximately 10 deg eccentricity). The results suggest that meaningful, stimulus-specific processing occurs even in regions that display a strong negative BOLD response.  相似文献   
34.
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity.  相似文献   
35.
36.
37.
The genetic diversity of 159 representative genotypes of native hop (Humulus lupulus var. lupuloides E. Small, Cannabaceae) from 34 selected populations was assessed by relative magnitudes and ranges of alpha acids (AA), beta acids (BA), and the cohumulone (CoH) component of alpha acids, with reference to temporal changes between 1989-1990 and 2001, and to the same attributes in American and European hop cultivars, principally H. lupulus var. lupulus L. Chemical profiles of these genotypes were generated by high pressure liquid chromatography (HPLC) of methanol extracts from their processed samples (cones). The alpha ratio (AR, alpha acids / alpha+beta acids) measured the degree to which alpha acids predominated in cone extracts. Synchronous ranges of AR and CoH were also selected for graphic portrayals of native hop genotypic diversity. Cones sampled and analyzed from eight populations that were accessible in both 1989 and 2001 were distinct in chemical attributes, indicating a succession of genotypes, and suggesting temporal cycling of H. lupulus var.lupuloides germplasm. The principal distinctions between the two sub-species were a markedly higher proportion of CoH (38-88% vs. 19-41%) in alpha acids of H. l. var. lupuloides, and generally higher concentrations of AA in cultivars of both American and European commercial hop cultivars, predominantly H. lupulus var. lupulus. All of the 159 native hop genotypes also contained detectable levels of xanthohumol and xanthogalenol, prenylflavonoids recently reported to have mammalian anti-cancer activity. Some native genotypes had previously exhibited natural repellence of insect and mite pests; thus H. lupulus var. lupuloides germplasm offers a diverse resource of underutilized and yet undefined biochemicals.  相似文献   
38.
Stellwagen D  Shatz CJ 《Neuron》2002,33(3):357-367
A central hypothesis of neural development is that patterned activity drives the refinement of initially imprecise connections. We have examined this hypothesis directly by altering the frequency of spontaneous waves of activity that sweep across the mammalian retina prior to vision. Activity levels were increased in vivo using agents that elevate cAMP. When one eye is made more active, its layer within the LGN is larger despite the other eye having normal levels of activity. Remarkably, when the frequency of retinal waves is increased in both eyes, normally sized layers form. Because relative, rather than absolute, levels of activity between the eyes regulate the amount of LGN territory devoted to each eye, we conclude that activity acts instructively to guide binocular segregation during development.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号