首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3571篇
  免费   342篇
  2023年   12篇
  2022年   30篇
  2021年   59篇
  2020年   33篇
  2019年   50篇
  2018年   53篇
  2017年   51篇
  2016年   71篇
  2015年   135篇
  2014年   140篇
  2013年   205篇
  2012年   259篇
  2011年   251篇
  2010年   141篇
  2009年   117篇
  2008年   227篇
  2007年   233篇
  2006年   207篇
  2005年   220篇
  2004年   192篇
  2003年   176篇
  2002年   152篇
  2001年   58篇
  2000年   39篇
  1999年   57篇
  1998年   61篇
  1997年   52篇
  1996年   35篇
  1995年   41篇
  1994年   29篇
  1993年   30篇
  1992年   29篇
  1991年   38篇
  1990年   28篇
  1989年   27篇
  1988年   15篇
  1987年   26篇
  1986年   21篇
  1985年   25篇
  1984年   18篇
  1983年   14篇
  1982年   18篇
  1981年   20篇
  1980年   17篇
  1979年   13篇
  1978年   14篇
  1977年   14篇
  1974年   18篇
  1973年   15篇
  1972年   13篇
排序方式: 共有3913条查询结果,搜索用时 31 毫秒
131.
BackgroundNorovirus (NoV) is the major cause of acute gastroenteritis across all age groups. In particular, variants of genogroup II, genotype 4 (GII.4) have been associated with epidemics globally, occurring approximately every three years. The pandemic GII.4 variant, Sydney 2012, was first reported in early 2012 and soon became the predominant circulating NoV strain globally. Despite its broad impact, both clinically and economically, our understanding of the fundamental diversity and mechanisms by which new NoV strains emerge remains limited. In this study, we describe the molecular epidemiological trends of NoV-associated acute gastroenteritis in Australia and New Zealand between January 2013 and June 2014.MethodologyOverall, 647 NoV-positive clinical faecal samples from 409 outbreaks and 238 unlinked cases of acute gastroenteritis were examined by RT-PCR and sequencing. Phylogenetic analysis was then performed to identify NoV capsid genotypes and to establish the temporal dominance of circulating pandemic GII.4 variants. Recombinant viruses were also identified based on analysis of the ORF1/2 overlapping region.FindingsPeaks in NoV activity were observed, however the timing of these epidemics varied between different regions. Overall, GII.4 NoVs were the dominant cause of both outbreaks and cases of NoV-associated acute gastroenteritis (63.1%, n = 408/647), with Sydney 2012 being the most common GII.4 variant identified (98.8%, n = 403/408). Of the 409 reported NoV outbreaks, aged-care facilities were the most common setting in both Western Australia (87%, n = 20/23) and New Zealand (58.1%, n = 200/344) while most of the NoV outbreaks were reported from hospitals (38%, n = 16/42) in New South Wales, Australia. An analysis of a subset of non-GII.4 viruses from all locations (125/239) showed the majority (56.8%, n = 71/125) were inter-genotype recombinants. These recombinants were surprisingly diverse and could be classified into 18 distinct recombinant types, with GII.P16/GII.13 (24% of recombinants) the most common.ConclusionThis study revealed that following its emergence in 2012, GII.4 Sydney 2012 variant continued to be the predominant cause of NoV-associated acute gastroenteritis in Australia and New Zealand between 2013 and 2014.  相似文献   
132.
Electromagnetic field (EMF) treatment has proven to be effective against mineral scaling in water systems. Therefore, it should be assessed for the treatment of other deposits such as biofilms. In this study, a commercial device producing low-frequency EMF (1–10 kHz) was applied to a reactor fed with natural water for 45 days. The treatment promoted the concentration of microorganisms in suspension and limited the amount of sessile microorganisms in the biofilm, as determined by the measurement of total DNA, qPCR and microscopy. The structure of the bacterial community was assessed by t-RFLP and pyrosequencing analysis. The results showed that EMF treatment affected both planktonic and sessile community composition. EMFs were responsible for a shift in classes of Proteobacteria during development of the biofilm. It may be speculated that the EMF treatment affected particle solubility and/or microorganism hydration. This study indicated that EMFs modulated biofilm formation in natural water.  相似文献   
133.
Processing speed is a psychological construct that refers to the speed with which an individual can perform any cognitive operation. Processing speed correlates strongly with general cognitive ability, declines sharply with age and is impaired across a number of neurological and psychiatric disorders. Thus, identifying genes that influence processing speed will likely improve understanding of the genetics of intelligence, biological aging and the etiologies of numerous disorders. Previous genetics studies of processing speed have relied on simple phenotypes (eg, mean reaction time) derived from single tasks. This strategy assumes, erroneously, that processing speed is a unitary construct. In the present study, we aimed to characterize the genetic architecture of processing speed by using a multidimensional model applied to a battery of cognitive tasks. Linkage and QTL‐specific association analyses were performed on the factors from this model. The randomly ascertained sample comprised 1291 Mexican‐American individuals from extended pedigrees. We found that performance on all three distinct processing‐speed factors (Psychomotor Speed; Sequencing and Shifting and Verbal Fluency) were moderately and significantly heritable. We identified a genome‐wide significant quantitative trait locus (QTL) on chromosome 3q23 for Psychomotor Speed (LOD = 4.83). Within this locus, we identified a plausible and interesting candidate gene for Psychomotor Speed (Z = 2.90, P = 1.86 × 10?03).  相似文献   
134.
135.
Global climate change has profound implications on species distributions and ecosystem functioning. In the coastal zone, ecological responses may be driven by various biogeochemical and physical environmental factors. Synergistic interactions can occur when the combined effects of stressors exceed their individual effects. The Red Sea, characterized by strong gradients in temperature, salinity, and nutrients along the latitudinal axis provides a unique opportunity to study ecological responses over a range of these environmental variables. Using multiple linear regression models integrating in situ, satellite and oceanographic data, we investigated the response of coral reef taxa to local stressors and recent climate variability. Taxa and functional groups responded to a combination of climate (temperature, salinity, air‐sea heat fluxes, irradiance, wind speed), fishing pressure and biogeochemical (chlorophyll a and nutrients ‐ phosphate, nitrate, nitrite) factors. The regression model for each species showed interactive effects of climate, fishing pressure and nutrient variables. The nature of the effects (antagonistic or synergistic) was dependent on the species and stressor pair. Variables consistently associated with the highest number of synergistic interactions included heat flux terms, temperature, and wind speed followed by fishing pressure. Hard corals and coralline algae abundance were sensitive to changing environmental conditions where synergistic interactions decreased their percentage cover. These synergistic interactions suggest that the negative effects of fishing pressure and eutrophication may exacerbate the impact of climate change on corals. A high number of interactions were also recorded for algae, however for this group, synergistic interactions increased algal abundance. This study is unique in applying regression analysis to multiple environmental variables simultaneously to understand stressor interactions in the field. The observed responses have important implications for understanding climate change impacts on marine ecosystems and whether managing local stressors, such as nutrient enrichment and fishing activities, may help mitigate global drivers of change.  相似文献   
136.
Globally, river degradation has decimated freshwater fish populations. To help reverse this trend in a southeastern Australia river, we used multiple restoration actions, including reintroduction of instream woody habitat, riparian revegetation, removal of a weir hindering fish movement, fencing out livestock, and controlling riparian weeds. We monitored the responses of native fish at the segment scale (20 km) and reach scale (0.3 km) over 7 years to assess the effectiveness of the different restoration strategies. Two closely related species, Murray cod Maccullochella peeli and trout cod Maccullochella macquariensis, increased at the restored segment compared with the control segment. However, inherent differences between river segments and low sample size hampered assessment of the mechanisms responsible for segment‐scale changes in fish abundance. In contrast, at the reach scale, only M. peeli abundance significantly increased in reaches supplemented with wood. These differential responses by 2 closely related fish species likely reflect species‐specific responses to increased habitat availability and enhanced longitudinal connectivity when the weir improved passage around a fishway. Changes in M. peeli abundance in segments supplemented with and without wood suggest an increase in carrying capacity and not simply a redistribution of individuals within the segment, facilitated the observed expansion. Our findings confirm the need to consider individual fish species' habitat preferences carefully when designing restoration interventions. Further, species‐specific responses to restoration actions provide waterway managers with precise strategies to target fish species for recovery and the potential to predict fish outcomes based on ecological preferences.  相似文献   
137.
Maternally heritable symbionts are common in arthropods and represent important partners and antagonists. A major impediment to understanding the mechanistic basis of these symbioses has been lack of genetic manipulation tools, for instance, those enabling transgenic GFP expression systems for in vivo visualization. Here, we transform the ‘son-killer’ reproductive parasite Arsenophonus nasoniae that infects the parasitic wasp Nasonia vitripennis with the plasmid pOM1-gfp, re-introduce this strain to N. vitripennis and then used this system to track symbiont life history in vivo. These data revealed transfer of the symbiont into the fly pupa by N. vitripennis during oviposition and N. vitripennis larvae developing infection over time through feeding. A strong tropism of A. nasoniae to the N. vitripennis ovipositor developed during wasp pupation, which aids onward transmission. The symbiont was also visualized in diapause larvae. Occasional necrotic diapause larvae were observed which displayed intense systemic infection alongside widespread melanotic nodules indicative of an active but failed immune response. Our results provide the foundation for the study of this symbiosis through in vivo tracking of the fate of symbionts through host development, which is rarely achieved in heritable microbe/insect interactions.  相似文献   
138.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   
139.
Fgf8 signalling is known to play an important role during patterning of the first pharyngeal arch, setting up the oral region of the head and then defining the rostral and proximal domains of the arch. The mechanisms that regulate the restricted expression of Fgf8 in the ectoderm of the developing first arch, however, are not well understood. It has become apparent that pharyngeal endoderm plays an important role in regulating craniofacial morphogenesis. Endoderm ablation in the developing chick embryo results in a loss of Fgf8 expression in presumptive first pharyngeal arch ectoderm. Shh is locally expressed in pharyngeal endoderm, adjacent to the Fgf8-expressing ectoderm, and is thus a candidate signal regulating ectodermal Fgf8 expression. We show that in cultured explants of presumptive first pharyngeal arch, loss of Shh signalling results in loss of Fgf8 expression, both at early stages before formation of the first arch, and during arch formation. Moreover, following removal of the endoderm, Shh protein can replace this tissue and restore Fgf8 expression. Overexpression of Shh in the non-oral ectoderm leads to an expansion of Fgf8, affecting the rostral-caudal axis of the developing first arch, and resulting in the formation of ectopic cartilage. Shh from the pharyngeal endoderm thus regulates Fgf8 in the ectoderm and the role of the endoderm in pharyngeal arch patterning may thus be indirectly mediated by the ectoderm.  相似文献   
140.
The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号