首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   22篇
  129篇
  2022年   1篇
  2020年   2篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   7篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1972年   1篇
  1966年   1篇
  1940年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
51.
The microtubule-associated protein tau is a principal component of neurofibrillary tangles, and has been identified as a key molecule in Alzheimer''s disease and other tauopathies. However, it is unknown how a protein that is primarily located in axons is involved in a disease that is believed to have a synaptic origin. To investigate a possible synaptic function of tau, we studied synaptic plasticity in the hippocampus and found a selective deficit in long-term depression (LTD) in tau knockout mice in vivo and in vitro, an effect that was replicated by RNAi knockdown of tau in vitro. We found that the induction of LTD is associated with the glycogen synthase kinase-3-mediated phosphorylation of tau. These observations demonstrate that tau has a critical physiological function in LTD.  相似文献   
52.
Timely degradation of regulatory proteins by the ubiquitin proteolytic pathway (UPP) is an established paradigm of cell cycle regulation during the G2/M and G1/S transitions. Less is known about roles for the UPP during S phase. Here we present evidence that dynamic cell cycle–dependent changes in levels of UbcH7 regulate entrance into and progression through S phase. In diverse cell lines, UbcH7 protein levels are dramatically reduced in S phase but are fully restored by G2. Knockdown of UbcH7 increases the proportion of cells in S phase and doubles the time to traverse S phase, whereas UbcH7 overexpression reduces the proportion of cells in S phase. These data suggest a role for UbcH7 targets in the completion of S phase and entry into G2. Notably, UbcH7 knockdown was coincident with elevated levels of the checkpoint kinase Chk1 but not Chk2. These results argue that UbcH7 promotes S phase progression to G2 by modulating the intra-S phase checkpoint mediated by Chk1. Furthermore, UbcH7 levels appear to be regulated by a UPP. Together the data identify novel roles for the UPP, specifically UbcH7 in the regulation of S phase transit time as well as in cell proliferation.  相似文献   
53.

Background  

Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users.  相似文献   
54.

Introduction

Osteopontin (OPN) has been implicated as a mediator of Th17 regulation via type I interferon (IFN) receptor signaling and in macrophage activity at sites of tissue repair. This study assessed whether increased circulating plasma OPN (cOPN) precedes development of organ damage in pediatric systemic lupus erythematosus (pSLE) and compared it to circulating plasma neutrophil gelatinase-associated lipocalin (cNGAL), a predictor of increased SLE disease activity.

Methods

cOPN and cNGAL were measured in prospectively followed pSLE (n = 42) and adult SLE (aSLE; n = 23) patients and age-matched controls. Time-adjusted cumulative disease activity and disease damage were respectively assessed using adjusted-mean SLE disease activity index (SLEDAI) (AMS) and SLICC/ACR damage index (SDI).

Results

Compared to controls, elevated cOPN and cNGAL were observed in pSLE and aSLE. cNGAL preceded worsening SLEDAI by 3-6 months (P = 0.04), but was not associated with increased 6-month AMS. High baseline cOPN, which was associated with high IFNalpha activity and expression of autoantibodies to nucleic acids, positively correlated with 6-month AMS (r = 0.51 and 0.52, P = 0.001 and 0.01 in pSLE and aSLE, respectively) and was associated with SDI increase at 12 months in pSLE (P = 0.001). Risk factors for change in SDI in pSLE were cOPN (OR 7.5, 95% CI [2.9-20], P = 0.03), but not cNGAL, cumulative prednisone, disease duration, immunosuppression use, gender or ancestry using univariate and multivariate logistic regression. The area under the curve (AUC) when generating the receiver-operating characteristic (ROC) of baseline cOPN sensitivity and specificity for the indication of SLE patients with an increase of SDI over a 12 month period is 0.543 (95% CI 0.347-0.738; positive predictive value 95% and negative predictive value 38%).

Conclusion

High circulating OPN levels preceded increased cumulative disease activity and organ damage in SLE patients, especially in pSLE, and its value as a predictor of poor outcome should be further validated in large longitudinal cohorts.  相似文献   
55.
1-(1-Acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea 14a (AR9281), a potent and selective soluble epoxide hydrolase inhibitor, was recently tested in a phase 2a clinical setting for its effectiveness in reducing blood pressure and improving insulin resistance in pre-diabetic patients. In a mouse model of diet induced obesity, AR9281 attenuated the enhanced glucose excursion following an intraperitoneal glucose tolerance test. AR9281 also attenuated the increase in blood pressure in angiotensin-II-induced hypertension in rats. These effects were dose-dependent and well correlated with inhibition of the sEH activity in whole blood, consistent with a role of sEH in the observed pharmacology in rodents.  相似文献   
56.
57.
Calcium (Ca(2+)) is a fundamental intracellular signalling molecule in neurons. Therefore, significant interest has been expressed in understanding how the dysregulation of Ca(2+) signals might impact on neuronal function and the progression of different disease states. Many previous studies have examined the role of Ca(2+) in neuronal excitotoxicity and some have started to understand how Ca(2+) dysregulation might be a cause or consequence of neurodegeneration. This review will therefore focus on the significance of Ca(2+) sensors, proteins that transduce Ca(2+) signals, in neuronal function and dysfunction. Finally, we will assess their potential role in neurodegenerative processes, such as Alzheimer's disease (AD), arguing that they could serve as potential therapeutic targets.  相似文献   
58.
Although fitness landscapes are central to evolutionary theory, so far no biologically realistic examples for large-scale fitness landscapes have been described. Most currently available biological examples are restricted to very few loci or alleles and therefore do not capture the high dimensionality characteristic of real fitness landscapes. Here we analyze large-scale fitness landscapes that are based on predictive models for in vitro replicative fitness of HIV-1. We find that these landscapes are characterized by large correlation lengths, considerable neutrality, and high ruggedness and that these properties depend only weakly on whether fitness is measured in the absence or presence of different antiretrovirals. Accordingly, adaptive processes on these landscapes depend sensitively on the initial conditions. While the relative extent to which mutations affect fitness on their own (main effects) or in combination with other mutations (epistasis) is a strong determinant of these properties, the fitness landscape of HIV-1 is considerably less rugged, less neutral, and more correlated than expected from the distribution of main effects and epistatic interactions alone. Overall this study confirms theoretical conjectures about the complexity of biological fitness landscapes and the importance of the high dimensionality of the genetic space in which adaptation takes place.  相似文献   
59.
Silver carboxylate coordination with the tetrachlorophthalate anion, in combination with neutral donor ligands, has been found to deviate from other known poly-carboxylate complexes. Both complexes reported here, bis-[tetrachlorophthalato-silver phthalazine] and bis-[ammino-tetrachlorophthato-silver di-ammino-silver], utilize mixed carboxylate bonding types for silver coordination. In the case of the phthalazine ligand, both chelating and monodentate carboxylates form the framework for the oligomeric structure. In the case of the ammine ligand, one carboxylate forms a monodentate connection to a silver-ammine group, while the other is simply involved with hydrogen bonding to lock in a [(Ag-NH3)2-Ag-NH3] substructure with an adjacent tetrachlorophthalato-silver unit. Both structures exhibit supramolecular connections via hydrogen bonding and π-π interactions.  相似文献   
60.
The tumor co-promotor TPA is believed to enhance a wide variety of cellular processes by interacting with protein kinase C. Interleukin (IL 1) is a family of highly active molecules which augments the host response to infection. We have explored the interactions of these activators of cell function on the modulation of selected eosinophil functions. The effects of purified monocyte-derived IL 1 on the eosinophil functions of oxidative metabolism (as measured by superoxide anion production) and degranulation (as measured by release of the granular enzymes arylsulfatase and beta-glucuronidase) have been examined. Superoxide anion production by eosinophils stimulated with standard doses of the stimulant phorbol myristic acetate (TPA) (1 microgram/ml) was augmented approximately 20% by preincubation with IL 1. However, IL 1 alone had no effect on superoxide anion production. At suboptimal doses of TPA, there was a dose-dependent inhibition of superoxide anion production in the presence of IL 1. Calcium ionophore (2 X 10(-7) M) markedly enhanced superoxide anion production elicited by 0.1 ng/ml of TPA, but had only modest effects in the absence of TPA. When IL 1 was added to eosinophils stimulated by TPA in the presence of calcium ionophore, there was a dose-dependent increase in superoxide anion production. In contrast to other cell types, degranulation as measured by the release of arylsulfatase and beta-glucuronidase was not elicited by the addition of TPA (1 microgram/ml). Although calcium ionophore (2 X 10(-6) M) caused enzyme release (24.2% release of beta-glucuronidase, 29.4% release of arylsulfatase), this release was inhibited by the addition of TPA. The addition of IL 1 alone caused an approximate twofold increase in enzyme release, but pretreatment with IL 1 (1 U) reduced ionophore-mediated degranulation (p less than or equal to 0.05). Studies employing purified monocyte IL 1 were confirmed by recombinant IL 1-beta. These studies demonstrate for the first time that eosinophil function is modulated by IL 1. IL 1 may also modify the response of eosinophils to other stimuli such as ionophore and TPA. Because TPA is known to act by direct binding to protein kinase C, these studies also demonstrate that, in eosinophils, activation of protein kinase C by phorbol esters may augment one cellular function (oxidative metabolism) while inhibiting another cellular function (degranulation). Similarly, phorbol esters may act synergistically with calcium ionophore in regulation of one function (oxidative metabolism) and act antagonistically with another function (degranulation). The concept that IL 1 uniformly enhances cell function may need to be re-evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号