首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   19篇
  273篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   14篇
  2014年   10篇
  2013年   6篇
  2012年   14篇
  2011年   9篇
  2010年   11篇
  2009年   7篇
  2008年   6篇
  2007年   10篇
  2006年   13篇
  2005年   10篇
  2004年   8篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   8篇
  1996年   8篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1979年   2篇
  1978年   2篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有273条查询结果,搜索用时 0 毫秒
71.
Paul  REL  Lafond  T  Müller-Graf  CDM  Nithiuthai  S  Brey  PT  Koella  JC 《BMC evolutionary biology》2004,4(1):1-13

Background

Theoretical studies suggest that direct and indirect selection have the potential to cause substantial evolutionary change in female mate choice. Similarly, sexual selection is considered a strong force in the evolution of male attractiveness and the exaggeration of secondary sexual traits. Few studies have, however, directly tested how female mate choice and male attractiveness respond to selection. Here we report the results of a selection experiment in which we selected directly on female mating preference for attractive males and, independently, on male attractiveness in the guppy, Poecilia reticulata. We measured the direct and correlated responses of female mate choice and male attractiveness to selection and the correlated responses of male ornamental traits, female fecundity and adult male and female survival.

Results

Surprisingly, neither female mate choice nor male attractiveness responded significantly to direct or to indirect selection. Fecundity did differ significantly among lines in a way that suggests a possible sexually-antagonistic cost to male attractiveness.

Conclusions

The opportunity for evolutionary change in female mate choice and male attractiveness may be much smaller than predicted by current theory, and may thus have important consequences for how we understand the evolution of female mate choice and male attractiveness. We discuss a number of factors that may have constrained the response of female choice and male attractiveness to selection, including low heritabilities, low levels of genetic (co)variation in the multivariate direction of selection, sexually-antagonistic constraint on sexual selection and the "environmental covariance hypothesis".
  相似文献   
72.
Cleaved antitrypsin polymers at atomic resolution   总被引:3,自引:0,他引:3       下载免费PDF全文
Alpha1-antitrypsin deficiency, which can lead to both emphysema and liver disease, is a result of the accumulation of alpha1-antitrypsin polymers within the hepatocyte. A wealth of biochemical and biophysical data suggests that alpha1-antitrypsin polymers form via insertion of residues from the reactive center loop of one molecule into the beta-sheet of another. However, this long-standing hypothesis has not been confirmed by direct structural evidence. Here, we describe the first crystallographic evidence of a beta-strand linked polymer form of alpha1-antitrypsin: the crystal structure of a cleaved alpha1-antitrypsin polymer.  相似文献   
73.
74.
75.
Prediction of protein function from protein sequence and structure   总被引:1,自引:0,他引:1  
The sequence of a genome contains the plans of the possible life of an organism, but implementation of genetic information depends on the functions of the proteins and nucleic acids that it encodes. Many individual proteins of known sequence and structure present challenges to the understanding of their function. In particular, a number of genes responsible for diseases have been identified but their specific functions are unknown. Whole-genome sequencing projects are a major source of proteins of unknown function. Annotation of a genome involves assignment of functions to gene products, in most cases on the basis of amino-acid sequence alone. 3D structure can aid the assignment of function, motivating the challenge of structural genomics projects to make structural information available for novel uncharacterized proteins. Structure-based identification of homologues often succeeds where sequence-alone-based methods fail, because in many cases evolution retains the folding pattern long after sequence similarity becomes undetectable. Nevertheless, prediction of protein function from sequence and structure is a difficult problem, because homologous proteins often have different functions. Many methods of function prediction rely on identifying similarity in sequence and/or structure between a protein of unknown function and one or more well-understood proteins. Alternative methods include inferring conservation patterns in members of a functionally uncharacterized family for which many sequences and structures are known. However, these inferences are tenuous. Such methods provide reasonable guesses at function, but are far from foolproof. It is therefore fortunate that the development of whole-organism approaches and comparative genomics permits other approaches to function prediction when the data are available. These include the use of protein-protein interaction patterns, and correlations between occurrences of related proteins in different organisms, as indicators of functional properties. Even if it is possible to ascribe a particular function to a gene product, the protein may have multiple functions. A fundamental problem is that function is in many cases an ill-defined concept. In this article we review the state of the art in function prediction and describe some of the underlying difficulties and successes.  相似文献   
76.
Porphyromonas gingivalis is a pathogen associated with periodontal disease, and arginine-specific proteases (gingipains-R) from the bacterium are important virulence factors. The specificity of two forms of gingipain-R, HRgpA and RgpB, for substrate positions C-terminal to the cleavage site was analyzed, and notable differences were observed between the enzymes. Molecular modeling of the HRgpA catalytic domain, based on the structure of RgpB, revealed that there are four amino acid substitutions around the active site of HRgpA relative to RgpB that may explain their different specificity. Previously, differences in the ability of these two gingipain-R forms to cleave a number of proteins were attributed to additional adhesins on HRgpA mediating increased interaction with the substrates. Here, purified RgpA(cat), the catalytic domain of HRgpA, which like RgpB also lacks adhesin subunits, was used to show that the differences between HRgpA and RgpB are probably due to the amino acid substitutions at the active site. The kinetics of cleavage of fibrinogen, a typical protein substrate for the gingipain-R enzymes, which is bound by HRgpA but not RgpA(cat) or RgpB, were evaluated, and it was shown that there was no difference in the cleavage of the fibrinogen Aalpha-chain between the different enzyme forms. HRgpA degraded the fibrinogen Bbeta-chain more efficiently, generating distinct cleavage products. This indicates that while the adhesin domain(s) play(s) a minor role in the cleavage of protein substrates, the major effect is still provided by the amino acid substitutions at the active site of rgpA gene products versus those of the rgpB gene.  相似文献   
77.
SKIP (skeletal muscle and kidney enriched inositol phosphatase) is a recently identified phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylinositol 4,5-bisphosphate-specific 5-phosphatase. In this study, we investigated the intracellular localization of SKIP. Indirect immunofluorescence and subcellular fractionation showed that, in serum-starved cells, both endogenous and recombinant SKIP colocalized with markers of the endoplasmic reticulum (ER). Following epidermal growth factor (EGF) stimulation, SKIP transiently translocated to plasma membrane ruffles and colocalized with submembranous actin. Data base searching demonstrated a novel 128-amino acid domain in the C terminus of SKIP, designated SKICH for SKIP carboxyl homology, which is also found in the 107-kDa 5-phosphatase PIPP and in members of the TRAF6-binding protein family. Recombinant SKIP lacking the SKICH domain localized to the ER, but did not translocate to membrane ruffles following EGF stimulation. The SKIP SKICH domain showed perinuclear localization and mediated EGF-stimulated plasma membrane ruffle localization. The SKICH domain of the 5-phosphatase PIPP also mediated plasma membrane ruffle localization. Mutational analysis identified the core sequence within the SKICH domain that mediated constitutive membrane association and C-terminal sequences unique to SKIP that contributed to ER localization. Collectively, these studies demonstrate a novel membrane-targeting domain that serves to recruit SKIP and PIPP to membrane ruffles.  相似文献   
78.
Serpins utilize conformational change to inhibit target proteinases; the price paid for this conformational flexibility is that many undergo temperature-induced polymerization. Despite this thermolability, serpins are present in the genomes of thermophilic prokaryotes, and here we characterize the first such serpin, thermopin. Thermopin is a proteinase inhibitor and, in comparison with human alpha(1)-antitrypsin, possesses enhanced stability at 60 degrees C. The 1.5 A crystal structure reveals novel structural features in regions implicated in serpin folding and stability. Thermopin possesses a C-terminal "tail" that interacts with the top of the A beta sheet and plays an important role in the folding/unfolding of the molecule. These data provide evidence as to how this unusual serpin has adapted to fold and function in a heated environment.  相似文献   
79.
Glycoprotein (GP) Ib-IX-V is a remarkable platelet adhesion receptor of the leucine-rich repeat family. It has evolved to fulfil its major function of initiating platelet aggregation (thrombus formation) at high-shear stress in flowing blood. In addition to binding von Willebrand factor (vWF) in subendothelial matrix or plasma to trigger platelet aggregation, GPIb-IX-V also binds counter-receptors, alphaMbeta2 (Mac-1) on neutrophils or P-selectin on activated platelets or endothelial cells. GPIb-IX-V ligands also include alpha-thrombin, clotting factors XI/XIIa, and high-molecular-weight kininogen. Interactions involving GPIb-IX-V are therefore central to vascular processes of thrombosis and inflammation, and the receptor is under intense scrutiny as a potential therapeutic target.  相似文献   
80.
MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein) is a developmentally regulated chromosomal serpin that condenses chromatin in terminally differentiated avian blood cells. We show that MENT is an effective inhibitor of the papain-like cysteine proteinases cathepsins L and V. In addition, ectopic expression of MENT in mammalian cells is apparently sufficient to inhibit a nuclear papain-like cysteine proteinase and prevent degradation of the retinoblastoma protein, a major regulator of cell proliferation. MENT also accumulates in the nucleus, causes a strong block in proliferation, and promotes condensation of chromatin. Variants of MENT with mutations or deletions within the M-loop, which contains a nuclear localization signal and an AT-hook motif, reveal that this region mediates nuclear transport and morphological changes associated with chromatin condensation. Non-inhibitory mutants of MENT were constructed to determine whether its inhibitory activity has a role in blocking proliferation. These mutations changed the mode of association with chromatin and relieved the block in proliferation, without preventing transport to the nucleus. We conclude that the repressive effect of MENT on chromatin is mediated by its direct interaction with a nuclear protein that has a papain-like cysteine proteinase active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号