首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2001篇
  免费   170篇
  国内免费   2篇
  2173篇
  2022年   18篇
  2021年   27篇
  2020年   18篇
  2019年   21篇
  2018年   21篇
  2017年   28篇
  2016年   57篇
  2015年   98篇
  2014年   102篇
  2013年   146篇
  2012年   164篇
  2011年   145篇
  2010年   100篇
  2009年   80篇
  2008年   112篇
  2007年   88篇
  2006年   82篇
  2005年   76篇
  2004年   78篇
  2003年   66篇
  2002年   56篇
  2001年   55篇
  2000年   49篇
  1999年   37篇
  1998年   21篇
  1997年   21篇
  1996年   26篇
  1995年   11篇
  1994年   24篇
  1993年   12篇
  1992年   24篇
  1991年   28篇
  1990年   19篇
  1989年   12篇
  1988年   18篇
  1987年   17篇
  1986年   17篇
  1985年   15篇
  1984年   9篇
  1983年   16篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   20篇
  1978年   10篇
  1976年   19篇
  1975年   12篇
  1974年   6篇
  1973年   8篇
  1970年   8篇
排序方式: 共有2173条查询结果,搜索用时 0 毫秒
61.
Human herpesvirus 8 (HHV8) is the primary viral etiologic agent in Kaposi's sarcoma (KS). However, individuals dually infected with both HHV8 and human immunodeficiency virus type 1 (HIV-1) show an enhanced prevalence of KS when compared with those singularly infected with HHV8. Host immune suppression conferred by HIV infection cannot wholly explain this increased presentation of KS. To better understand how HHV8 and HIV-1 might interact directly in the pathogenesis of KS, we queried for potential regulatory interactions between the two viruses. Here, we report that HHV8 and HIV-1 reciprocally up-regulate the gene expression of each other. We found that the KIE2 immediate-early gene product of HHV8 interacted synergistically with Tat in activating expression from the HIV-1 long terminal repeat. On the other hand, HIV-1 encoded Tat and Vpr proteins increased intracellular HHV8-specific expression. These results provide molecular insights correlating coinfection with HHV8 and HIV-1 with an unusually high incidence of KS.  相似文献   
62.
Adenine-DNA glycosylase MutY of Escherichia coli catalyzes the cleavage of adenine when mismatched with 7,8-dihydro-8-oxoguanine (GO), an oxidatively damaged base. The biological outcome is the prevention of C/G→A/T transversions. The molecular mechanism of base excision repair (BER) of A/GO in mammals is not well understood. In this study we report stimulation of mammalian adenine-DNA glycosylase activity by apurinic/apyrimidinic (AP) endonuclease using murine homolog of MutY (Myh) and human AP endonuclease (Ape1), which shares 94% amino acid identity with its murine homolog Apex. After removal of adenine by the Myh glycosylase activity, intact AP DNA remains due to lack of an efficient Myh AP lyase activity. The study of wild-type Ape1 and its catalytic mutant H309N demonstrates that Ape1 catalytic activity is required for formation of cleaved AP DNA. It also appears that Ape1 stimulates Myh glycosylase activity by increasing formation of the Myh–DNA complex. This stimulation is independent of the catalytic activity of Ape1. Consequently, Ape1 preserves the Myh preference for A/GO over A/G and improves overall glycosylase efficiency. Our study suggests that protein–protein interactions may occur in vivo to achieve efficient BER of A/GO.  相似文献   
63.
C L Chiang 《Biometrics》1985,41(3):771-775
  相似文献   
64.
The CAF1 protein is a component of the CCR4–NOT deadenylase complex. While yeast CAF1 displays deadenylase activity, this activity is not required for its deadenylation function in vivo, and CCR4 is the primary deadenylase in the complex. In order to identify CAF1-specific functional regions required for deadenylation in vivo, we targeted for mutagenesis six regions of CAF1 that are specifically conserved among CAF1 orthologs. Defects in residues 213–215, found to be a site required for binding CCR4, reduced the rate of deadenylation to a lesser extent and resulted in in vivo phenotypes that were less severe than did defects in other regions of CAF1 that displayed greater contact to CCR4. These results imply that CAF1, while affecting deadenylation through its contact to CCR4, has functions in deadenylation separate from its contact to CCR4. Synthetic lethalities of caf1Δ, but not that of ccr4Δ, with defects in DHH1 or PAB1, both of which are involved in translation, further supports a role of CAF1 separate from that of CCR4. Importantly, other mutations in PAB1 that reduced translation, while not affecting deadenylation by themselves or when combined with ccr4Δ, severely blocked deadenylation when coupled with a caf1 deletion. These results indicate that both CAF1 and factors involved in translation are required for deadenylation.  相似文献   
65.
Brugada syndrome is a life-threatening, inherited arrhythmia disorder associated with autosomal dominant mutations in SCN5A, the gene encoding the human cardiac Na+ channel α subunit (Nav1.5). Here, we characterized the biophysical properties of a novel Brugada syndrome-associated Nav1.5 mutation, A551T, identified in a proband who was successfully resuscitated from an episode of ventricular fibrillation with sudden collapse. Whole-cell currents through wild-type (WT) Nav1.5 and mutant (A551T) channels were recorded and compared in the human embryonic kidney cell line HEK293T transfected with SCN5A cDNA and SCN1B cDNA, using the patch-clamp technique. Current density was decreased in the A551T mutant compared to the WT. In addition, the A551T mutation reduced Nav1.5 activity by promoting entry of the channel into fast inactivation from the closed state, thereby shifting the steady-state inactivation curve by -5 mV. Furthermore, when evaluated at -90 mV, the resting membrane potential, but not at the conventionally used -120 mV, both the percentage, and rate, of channel recovery from inactivation were reduced in the mutant. These results suggest that the DI-DII linker may be involved in the stability of inactivation gating process. This study supports the notion that a reduction in Nav1.5 channel function is involved in the pathogenesis of Brugada syndrome. The structural-functional study of the Nav1.5 channel advances our understanding of its pathophysiolgocial function.  相似文献   
66.
Curcumin is reported to be a potent inhibitor of the initiation and promotion of many cancer cells. We investigated to examine whether or not curcumin induce DNA damage in mouse–rat hybrid retina ganglion cell line N18 cells. The Comet assay showed that incubation of N18 cells with 10, 25 and 30 μM of curcumin led to a longer DNA migration smear (Comet tail). The DNA gel electrophoresis showed that 20 μM of curcumin for 24 and 48 h treatment induced DNA damage and fragments in N18 cells. The real time PCR analysis showed that 20 μM of curcumin for 48 h treatment decreased ATM, ATR, BRCA1, 14-3-3σ, DNA-PK and MGMT mRNA, and ATM and MGMT mRNA expression were inhibited in a time-dependent manner. Our results indicate that curcumin caused DNA damage and inhibited DNA repair genes which may be the factors for curcumin-inhibited cell growth. H.-F. Lu and J.-S. Yang are contributed equally to this study.  相似文献   
67.
68.
69.
Dysmenorrhea is directly related to elevated PGF(2alpha) levels. It is treated with nonsteroid antiinflammatory drugs (NSAIDs) in Western medicine. Since NSAIDs produce many side effects, Chinese medicinal therapy is considered as a feasible alternative medicine. Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf.) has been used as a traditional Chinese medicine for treating dysmenorrhea. However, the relationship between smooth muscle contraction and adlay extracts remains veiled. Therefore, we investigated this relationship in the rat uterus by measuring uterine contraction activity and recording the intrauterine pressure. We studied the in vivo and in vitro effects of the methanolic extracts of adlay hull (AHM) on uterine smooth muscle contraction. The extracts were fractionated using four different solvents: water, 1-butanol, ethyl acetate, and n-hexane; the four respective fractions were AHM-Wa, AHM-Bu, AHM-EA, and AHM-Hex. AHM-EA and its subfractions (175 microg/ml) inhibited uterine contractions induced by PGF(2alpha), the Ca(2+) channel activator Bay K 8644, and high K(+) in a concentration-dependent manner in vitro. AHM-EA also inhibited PGF(2alpha)-induced uterine contractions in vivo; furthermore, 375 microg/ml of AHM-EA inhibited the Ca(2+)-dependent uterine contractions. Thus 375 microg/ml of AHM-EA consistently suppressed the increases in intracellular Ca(2+) concentrations induced by PGF(2alpha) and high K(+). We also demonstrated that naringenin and quercetin are the major pure chemical components of AHM-EA that inhibit PGF(2alpha)-induced uterine contractions. Thus AHM-EA probably inhibited uterine contraction by blocking external Ca(2+) influx, leading to a decrease in intracellular Ca(2+) concentration. Thus adlay hull may be considered as a feasible alternative therapeutic agent for dysmenorrhea.  相似文献   
70.
Benzophenone is an ultraviolet (UV)-absorbing agent that has been used in industry and medicine for more than 30 years. Consumers of cosmetics and sunscreens containing UV-absorbers are exposed to benzophenones on a daily basis, owing to the widespread use of these compounds. However, the efficacy of these compounds as scavengers of oxidative stress is still not well established. In the present study, we investigate the antioxidative capacity of six sunscreen benzophenone compounds. A primary myoblast culture was mixed in vitro with 100 microM menadione. The cytotoxic effect by menadione-induced oxidative stress was monitored by the lucigenin- or luminol-amplified chemiluminescence, methylthiotetrazole (MTT) assay, and the antioxidative effects of various benzophenone compounds were evaluated. The results showed that the addition of menadione can induce oxidative stress on myoblasts by superoxide and hydrogen peroxide production, which can be eradicated by superoxide dismutase (SOD) and catalase, respectively, in a dose-dependent mode. The catalase has a protective effect on the cytotoxicity induced by menadione as measured by the MTT assay, while the SOD does not. The selected benzophenones also have a significant scavenging effect on the menadione-induced cell death on the myoblasts. The ortho-dihydroxyl structure and other hydroxy groups in the same ring have a stronger scavenging effect on the superoxide anion on myoblasts; thus, a stable penoxy radical may be formed. The mechanism of this effect remains to be clarified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号