首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   136篇
  2021年   26篇
  2020年   12篇
  2019年   14篇
  2018年   19篇
  2017年   15篇
  2016年   24篇
  2015年   46篇
  2014年   49篇
  2013年   70篇
  2012年   84篇
  2011年   88篇
  2010年   35篇
  2009年   44篇
  2008年   59篇
  2007年   55篇
  2006年   48篇
  2005年   63篇
  2004年   46篇
  2003年   57篇
  2002年   50篇
  2001年   59篇
  2000年   41篇
  1999年   37篇
  1998年   20篇
  1997年   16篇
  1995年   20篇
  1994年   19篇
  1993年   14篇
  1992年   35篇
  1991年   33篇
  1990年   33篇
  1989年   24篇
  1988年   32篇
  1987年   22篇
  1986年   23篇
  1985年   16篇
  1984年   25篇
  1983年   18篇
  1982年   16篇
  1981年   11篇
  1980年   19篇
  1979年   17篇
  1978年   26篇
  1976年   11篇
  1975年   31篇
  1974年   12篇
  1973年   18篇
  1972年   13篇
  1971年   12篇
  1970年   10篇
排序方式: 共有1732条查询结果,搜索用时 15 毫秒
21.
We used a predominantly diploid Chinese hamster cell line to test a number of naturally occurring and synthetic estrogens for their ability to arrest cells at metaphase, their potential for allowing anaphase recovery, and their capability of inducing aneuploid progeny. The chemicals employed included diethylstilbestrol, dienestrol, hexestrol, beta-estradiol, ethynylestradiol and estriol. We also tested progesterone, estrone and testosterone in this regard. Only estrogens and their synthetic analogs caused mitotic arrest and aneuploidy, while progesterone, estrone and testosterone did not cause mitotic disturbances. Among the estrogens, DES was the most effective arrestant on a comparative molar basis, whereas dienestrol was most potent over a wide range of concentrations. Estriol was the least potent as an arrestant but was an effective inducer of aneuploidy. The addition of a metabolic activator (S9) did not alter the ability of DES to arrest mitosis. Following the removal of the drugs, cells were able to quickly reorganize a spindle apparatus and enter anaphase. Diethylstilbestrol, dienestrol, hexestrol, beta-estradiol, ethynylestradiol and estriol caused significant increase in aneuploidy within a narrow range of high concentrations in recovering cell populations. Aneuploidy was induced in a non-random manner. Immunofluorescence studies with anti-tubulin antibody indicate that estrogens may have a mechanism of mitotic arrest similar to that of colchicine and colcemid, viz inhibiting the polymerization of tubulin to form microtubules. These data suggest that the interaction between estrogens and microtubules may mediate the induction of aneuploidy in somatic cells. Aneuploidy induction by DES and similar compounds may be related to their carcinogenic potential.  相似文献   
22.
Two unicellular marine algae cultured in media containing sodium selenite were examined for glutathione peroxidase activity. The 400 g supernatant from disrupted cells of both the green alga Dunaliella primolecta and the red alga Porphyridium cruentum were able to enhance both the H2O2 and the tert-butyl hydroperoxide dependent oxidation of glutathione. The glutathione peroxidation activity of D. primolecta was reduced only slightly by heating the 400 g supernatant, a 30% decrease in the rate with H2O2 and 10% decrease in the rate with t-BuOOH being observed. Heating caused the H2O2 dependent activity in P. cruentum to be reduced by only 30%, but the activity with t-BuOOH was reduced by 90%. Freezing decreased the t-BuOOH dependent activity of P. cruentum by 90%, but did not lower the t-BuOOH dependent activity of D. primolecta or the H2O2 dependent activity of either alga. It was concluded that the heat and cold stable, glutathione peroxidation was non-enzymatic in nature. A variety of small molecules (ascorbate, Cu(NO3)2, selenocystine, dimethyldiselenide and selenomethionine) were shown to be able to enhance the hydroperoxide dependent oxidation of glutathione in the assay system employed in this study. Such compounds could be responsible for the activity observed in algae. The heat and cold labile t-BuOOH reductase activity of P. cruentumwas possibly enzymatic, but was not attributable to the presence of glutathione-S-transferase. Both algae, when cultured in the presence of added selenite, displayed an approximate doubling of the non-enzymatic H2O2 and t-BuOOH dependent glutathione oxidase activities. The heat and cold labile t-BuOOH reductase activity of P. cruentum was unaltered when the alga was grown in the presence of added selenite. These observations are consistent with the hypothesis that selenium compounds present in the algae are responsible for the selenium induced glutathione peroxidation.  相似文献   
23.
Genome size and complexity in Azotobacter chroococcum   总被引:21,自引:0,他引:21  
All of eight strains of Azotobacter chroococcum examined contained between two and six plasmids ranging from 7 to more than 200 MDal in size. Strain MCC-1, a derivative of NCIMB 8003, was cured of various of the four largest of its five plasmids and the phenotypes of the strains compared. all fixed nitrogen and exhibited uptake hydrogenase activity. No differences were observed in carbon source utilization or antibiotic, heavy metal or UV resistance. The genome sizes of two strains of A. chroococcum were determined by two-dimensional electrophoresis. Strain CW8, an isolate from local soil containing two small plasmids of 6 and 6.5 MDAl contained unique DNA sequences equivalent to 1.78 x 10(6) (+/- 20%) bp (1.2 x 10(9) Dal). In strain MDC-1, a derivative of MCC-1, containing a 190 MDal and 7 MDal plasmid, the genome size was 1.94 x 10(6) (+/- 20%) bp. In exponential batch cultures, both contained 20 to 25 genome equivalents per cell. MCD-1 exhibited complex UV kill kinetics with a marked plateau of resistance; CW8 showed a simple response inconsistent with the possibility of organization of its DNA into identical chromosome copies capable of independent segregation.  相似文献   
24.
Lipoprotein lipases in the flight muscles of Locusta migratoria show a marked substrate specificity: diacylglycerols associated with the adipokinetic hormone (AKH)-induced lipoprotein, A+, are hydrolysed at 4 to 5 times the rate of those associated with the lipoprotein in resting (non-hormone-stimulated) locusts, Ayellow. To determine the basis for this discrimination, the effect on the activity of flight muscle lipoprotein lipase of CL-proteins, a major constituent of lipoprotein A+, but not of Ayellow, has been investigated; they inhibit the flight muscle enzyme in a competitive manner whether activity is measured with a natural lipoprotein substrate, a lipid emulsion or a water soluble substrate. Experiments in vivo suggest that the flight muscle enzyme is normally inhibited in resting (non-AKH-stimulated) locusts but, interestingly, injection of synthetic AKH-I relieves the inhibition and increases the activity by 30 to 40%. This is not a direct effect of the hormone on the enzyme, but appears to be related to the hormone-induced formation of lipoprotein A+, so that the majority of CL-proteins in the haemolymph become bound to this lipoprotein and the concentration of free CL-proteins is markedly reduced. We suggest that CL-proteins play a major role in the regulation of lipoprotein lipase in locust flight muscle.  相似文献   
25.
26.
The brains of male Fisher 344 rats bearing 80-150 mg intracerebral 9L/Ro tumors were irradiated with doses of 1,250-5,000 rads of x- or gamma-rays. At various times after irradiation, the cerebellum and tumor were excised, dissociated into single cells and the DNA from these cells sedimented through alkaline sucrose gradients in zonal rotors with slow gradient reorienting capability. Quantitation of the DNA repair kinetics demonstrated that the process in both tumor cells and neurons has a fast and slow phase. Although all other alternatives cannot be completely eliminated, we suggest that these two phases are most reasonably interpreted as representing repair of lesions in very accessible and less accessible regions of the genome rather than 1) repair of different types of lesions such as single- or double-strand breaks or 2) removal of immediate breaks and breaks induced during excision repair of latent base damage. The slow repair phase is saturable, but not inducible in both tumor cells and neurons. The data suggest that tumor cells restore their chromosomal DNA structure to the unirradiated state faster than neurons because 1) they contain more of the repair system per unit of DNA and 2) a larger proportion of their genetic material is comprised of very accessible regions. The data also suggest that the entire tumor cell genome may be accessible to the repair enzyme(s), while it is possible that a portion of the neuronal genome may be completely inaccessible.  相似文献   
27.
28.
29.
30.
Wheeler , George E. (Brooklyn Coll., Brooklyn, N. Y.) Polygonal aspects of cell faces. I. Pentagons and hexagons as prevailing types. Amer. Jour. Bot. 49(3): 246–252. Illus. 1962.—Different types of cell faces, classified as to polygon type (i.e., number of sides per face), may predominate in different samples of internal cells and of internal tissues; no single face type is exclusively predominant in all tissues. Pentagons usually are the most numerous type in the cell samples reported in the literature, but hexagons exceed them in some samples. Generally, these 2 “compete” for numerical supremacy. Perpetuation of an already-established, face-type dominance was studied, using data from the literature and from original diagrams. Cell-division orientation, i.e., the location and the relative positioning of new cell-division walls, was found to be the prime factor in maintaining the preponderant type. The polygon nature of the new wall is an additional, but less important, factor. Typical division events tend to favor pentagonal faces; but with an increase in cell division “regularity,” hexagons begin to rise in numbers. During the early stages in tissue differentiation, while mitosis is still occurring, one face type may replace another as the predominating type. Such a shift may be associated with the developmental characteristics of that tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号